1、考向3牛顿定律与多过程多对象问题(2020浙江7月选考)如图1所示,有一质量m=200 kg的物件在电机的牵引下从地面竖直向上经加速、匀速、匀减速至指定位置。当加速运动到总位移的时开始计时,测得电机的牵引力随时间变化的F-t图线如图2所示,t=34 s末速度减为0时恰好到达指定位置。若不计绳索的质量和空气阻力(g取10 m/s2),求物件:(1)做匀减速运动的加速度大小和方向;(2)匀速运动的速度大小;(3)总位移的大小。(1)审题破题眼:(2)情境化模型:(3)命题陷阱点:陷阱1:不能从F-t图象中准确分析出匀速和减速过程。图象记录的过程不包含运动初始阶段,而力的变化只有两个阶段,所以只能是
2、匀速和减速阶段。陷阱2:纠结于求解加速过程的位移而忽略了“总位移的时开始计时”这个条件。本题对于加速阶段给定的条件不足,无法求出加速过程的位移,求总位移只能利用这个条件。掌握多过程或多对象问题的“两个方法、一种能力、两个依据”1.(弹簧问题)如图所示,水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动。已知F1F2,当运动达到稳定时,关于弹簧的伸长量下列说法正确的是()A.若水平地面光滑,弹簧的伸长量为B.若水平地面光滑,弹簧的伸长量为C.若水平地面粗糙且两个物体与地面的动摩擦因数相同,弹簧的伸长量为D.若水平地面粗糙且两个物体与地面的动摩擦因数相同
3、,弹簧的伸长量为2.(电梯问题)(多选)如图,物块A通过细绳悬挂于电梯侧壁的O点,A与侧壁间夹有薄木板B,绳与侧壁夹角为,已知A、B质量分别为M、m,A、B间摩擦忽略不计。当电梯静止时,B恰好不滑落,重力加速度为g,下列判断正确的是()A.电梯加速上升时,木板B会滑落B.电梯以加速度a(ag)竖直下降时,木板B会滑落C.当电梯以加速度a竖直加速上升时,绳子拉力T=D.当电梯以加速度a(am2,则 x1x2D.若m1m2,则 x1x25.如图所示,A、B两球质量相等,光滑斜面的倾角为,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面
4、平行,则在突然撤去挡板的瞬间有()A.两图中两球加速度均为gsinB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球的加速度的2倍6.如图所示,一条小鱼在水面处来了个“鲤鱼打挺”,弹起的高度为H=2h,以不同的姿态落入水中,其入水深度不同。若鱼身水平,落入水中的深度为h1=h;若鱼身竖直,落入水中的深度为h2=1.5 h;假定鱼的运动始终在竖直方向上,在水中保持姿态不变,受到水的作用力也不变,空气中的阻力不计,鱼身的尺寸远小于鱼入水深度。重力加速度为g,求:(1)鱼入水时的速度v;(2)鱼两次在水中运动的时间之比t1t2;(3)鱼两次受到水的作用力之
5、比F1F2。7.水平地面上有质量分别为m和4m的物块A和B,两者与地面的动摩擦因数均为。细绳的一端固定,另一端跨过轻质动滑轮与A相连,动滑轮与B相连,如图所示。初始时,绳处于水平拉直状态。若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g。求:(1)物块B克服摩擦力所做的功。(2)物块A、B的加速度大小。8.可爱的企鹅喜欢在冰面上玩游戏。如图所示,有一企鹅在倾角为37的倾斜冰面上,先以加速度a=0.5 m/s2 从冰面底部由静止开始沿直线向上“奔跑”,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变)。若企鹅肚皮与冰面
6、间的动摩擦因数=0.25,已知sin37=0.6,cos 37=0.8,g取10 m/s2。求:(1)企鹅向上“奔跑”的位移大小;(2)企鹅在冰面滑动的加速度大小;(3)企鹅退滑到出发点时的速度大小。(计算结果可用根式表示)专题二牛顿定律的应用考向3/研透真题破题有方/【解析】(1)由图2可知026 s内物件匀速运动,2634 s物件匀减速运动,在匀减速运动过程根据牛顿第二定律有mg-F=ma根据图2得此时F=1 975 N,则有a=g-=0.125 m/s2方向竖直向下。(2)结合图2根据运动学公式有v=at2=0.125(34-26) m/s=1 m/s(3)根据图象可知匀速上升的位移h1
7、=vt1=126 m=26 m匀减速上升的位移h2=t2=8 m=4 m匀加速上升的位移为总位移的,则匀速上升和减速上升的位移为总位移的,则有h1+h2=h所以总位移为h=40 m答案:(1)0.125 m/s2竖直向下(2)1 m/s(3)40 m/多维猜押制霸考场/1.D设两个物体的质量均为m,若水平地面光滑,以整体为研究对象,根据牛顿第二定律得a=,再以A为研究对象,由牛顿第二定律得:F1-kx=ma,代入解得弹簧的伸长量为x=,选项A、B错误;若水平地面粗糙且两个物体与地面的动摩擦因数相同, 以整体为研究对象,根据牛顿第二定律得 a=-g,再以A为研究对象,由牛顿第二定律得:F1-kx
8、-mg=ma,代入解得,弹簧的伸长量为x=,选项D正确,C错误。2.C、D以A为研究对象,其受力如图。静止时,有NAB=Mgtan,此时,B恰好不滑落,有mg=NB=NAB=Mgtan,即:=tan。当电梯加速上升时,有:Tcos-Mg=MaTsin=NAB可得:T=说明选项C正确。NAB=M(g+a)tan因A对B的压力与B对A的压力是一对作用力与反作用力,故NBA=NAB,且当电梯加速下降时,a取负值。故式说明选项D是正确的。侧壁与B的最大静摩擦力为:f0=NAB=m(g+a)B随电梯上升不滑落,所需的摩擦力为:f-mg=ma,即f=m(g+a)由可见,f=f0,故电梯加速上升时,B也刚好
9、不滑落,当电梯加速下落时,两式的a取负值,两者也刚好相等。说明B随电梯加速下落时不滑落,A、B错误。3.A以50个小物块组成的整体为研究对象,由牛顿第二定律得:a=-g(sin30+cos30);以下面5个小物块为研究对象,由牛顿第二定律得:F-5mgsin30-5mgcos30-N=5ma,解得:N=F,选项A正确。4.A对甲有F-mAg=mAaA,解得aA=-g;对乙有F-mBg=mBaB,解得aB=-g,当甲的质量大,则甲的加速度小,根据l=at2知,甲的运动时间长,所以乙先到达滑轮。当甲乙的质量相等,则运动时间相同,同时到达滑轮。故A正确,B、C、D均错。/高考猜押竞技场/1.B、C电
10、梯匀速直线运动时,弹簧秤的示数为10 N,知重物的重力等于10 N,在某时刻电梯中的人观察到弹簧秤的示数变为6 N,可知电梯处于失重状态,加速度向下,对重物根据牛顿第二定律有:mg-F=ma,解得a=4 m/s2,方向竖直向下,则电梯的加速度大小为4 m/s2,方向竖直向下。电梯可能向下做加速运动,也可能向上做减速运动,故B、C正确,A、D错误。2.C直升机原型机的受力如图所示,所受合外力大小为mg,方向斜向右上方,加速度大小为g,故选项A、B均错误;空气对直升机原型机的作用力大小为=2mg,故选项C正确,D错误。本题也可以由水平方向的加速度ax=2g和竖直方向的加速度ay=g合成得到原型机的
11、加速度a=g。3.A、D由题图知,在上升过程中,在04 s内,加速度方向向上,FN-mg=ma,所以向上的加速度越大,电梯对人的支持力就越大,由牛顿第三定律可知,人对电梯的压力就越大,故A正确,B错误;由题图知,在710 s内加速度方向向下,由mg-FN=ma知,向下的加速度越大,人对电梯的压力就越小,故C错误,D正确。4.A由牛顿第二定律知,对左图的整体受力分析,加速度a1=,对左图的物体b,有kx1-m2g=m2a1,联立以上二式解得kx1=;对右图的整体,加速度a2=,对右图的物体b,有kx2=m2a2,联立以上二式解得kx2=,可见x1=x2,选项A正确。5.D撤去挡板前,挡板对B球的
12、弹力大小为2mgsin,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为0,加速度为0,B球所受合力为2mgsin,加速度为2gsin;图乙中杆的弹力突变为0,A、B两球所受合力均为mgsin,加速度均为gsin,可知只有选项D正确。6.【解析】(1)由v2=2gH,得v=2(2)h1=t1,h2=t2,得=(3)2gH=v2=2a1h1,F1-mg=ma1得F1=3mg,同理得F2=mg,所以=答案:(1)2(2)23(3)977.【解析】(1)物块A移动了距离s,则物块B移动的距离为s1= s物块B受到的摩擦力大小为f=4mg物块B克服摩擦力所做的功为W=fs1
13、=2mgs(2)设物块A、B的加速度大小分别为aA、aB,绳中的张力为T。由牛顿第二定律得F-mg-T=maA2T-4mg=4maB由A和B的位移关系得aA=2aB联立式得aA=aB=答案:(1)2mgs(2)8.【解析】(1)企鹅向上“奔跑”的过程中有x=at2,解得x=16 m。(2)在企鹅卧倒以后将进行两个过程的运动,第一个过程是从卧倒到最高点,第二个过程是从最高点滑回到出发点,两次过程根据牛顿第二定律分别有mgsin37+mgcos37=ma1mgsin37-mgcos37=ma2解得a1=8 m/s2,a2=4 m/s2。(3)企鹅从卧倒滑到最高点的过程中,做匀减速直线运动,设时间为t,位移为xt=,x=a1t2,解得x=1 m。企鹅从最高点滑到出发点的过程中,设末速度为vt,初速度为0,则有-02=2a2(x+x)解得vt=2 m/s。答案:(1)16 m(2)从卧倒到最高点时加速度大小为8 m/s2从最高点滑回到出发点时加速度大小为4 m/s2(3)2 m/s关闭Word文档返回原板块