1、第四节合情推理与演绎推理考纲传真1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理1合情推理类型定义特点归纳推理根据一类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理简言之,演绎推理
2、是由一般到特殊的推理(2)“三段论”是演绎推理的一般模式,包括:大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理,对特殊情况做出的判断1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)归纳推理与类比推理都是由特殊到一般的推理()(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适()(3)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确()答案(1)(2)(3)(4)2由“半径为R的圆内接矩形中,正方形的面积最大”,推出“半径为R的
3、球的内接长方体中,正方体的体积最大”是()A归纳推理B类比推理C演绎推理D以上都不是B类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)所以,由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是类比推理,选B.3(教材改编)已知数列an中,a11,n2时,anan12n1,依次计算a2,a3,a4后,猜想an的表达式是()Aan3n1Ban4n3Cann2Dan3n1Ca11,a24,a39,a416,猜想ann2.4“因为指数函数yax是增函数(大前提),而y
4、x是指数函数(小前提),所以函数yx是增函数(结论)”,上面推理的错误在于()A大前提错误导致结论错误B小前提错误导致结论错误C推理形式错误导致结论错误D大前提和小前提错误导致结论错误A“指数函数yax是增函数”是本推理的大前提,它是错误的因为实数a的取值范围没有确定,所以导致结论是错误的5(2014全国卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市由此可判断乙去过的城市为_A由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”
5、,说明乙去过城市A,由此可知,乙去过的城市为A.归纳推理(1)(2016武汉4月调研)数列,的第20项是()A.B.C.D.(2)(2016山东高考)观察下列等式:2212;222223;222234;222245;照此规律,2222_.(1)C(2)n(n1)(1)数列在数列中是第123m项,当m5时,即是数列中第15项,则第20项是,故选C.(2)通过观察已给出等式的特点,可知等式右边的是个固定数,后面第一个数是等式左边最后一个数括号内角度值分子中的系数的一半,后面第二个数是第一个数的下一个自然数,所以,所求结果为n(n1),即n(n1)规律方法1.常见的归纳推理分为数的归纳和形的归纳两类
6、:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性2归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质;(2)从相同性质中推出一个明确表述的一般性命题变式训练1(1)已知x(0,),观察下列各式:x2,x3,x4,类比得xn1(nN*),则a_.(2)下面图形由小正方形组成,请观察图641(1)至图(4)的规律,并依此规律,写出第n个图形中小正方形的个数是_. 【导学号:31
7、222221】图641(1)nn(nN*)(2)(nN*)(1)第一个式子是n1的情况,此时a111;第二个式子是n2的情况,此时a224;第三个式子是n3的情况,此时a3327,归纳可知ann.(2)由题图知第n个图形的小正方形个数为123n.所以总个数为(nN*)类比推理(1)(2016陕西师大附中模拟)若数列an是等差数列,则数列bn也是等差数列,类比这一性质可知,若正项数列cn是等比数列,且dn也是等比数列,则dn的表达式应为()AdnBdnCdnDdn(2)(2016贵州六校联考)在平面几何中,ABC的C的平分线CE分AB所成线段的比为.把这个结论类比到空间:在三棱锥ABCD中(如图
8、642),DEC平分二面角ACDB且与AB相交于E,则得到类比的结论是_图642(1)D(2)(1)法一:从商类比开方,从和类比到积,则算术平均数可以类比几何平均数,故dn的表达式为dn.法二:若an是等差数列,则a1a2anna1d,bna1dna1,即bn为等差数列;若cn是等比数列,则c1c2cncq12(n1)cq,dnc1q,即dn为等比数列,故选D.(2)由平面中线段的比转化为空间中面积的比可得.规律方法1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键2类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比
9、数列类比;运算类比(和与积、乘与乘方,差与除,除与开方)数的运算与向量运算类比;圆锥曲线间的类比等变式训练2给出下面类比推理(其中Q为有理数集,R为实数集,C为复数集):“若a,bR,则ab0ab”类比推出“a,cC,则ac0ac”;“若a,b,c,dR,则复数abicdiac,bd”类比推出“a,b,c,dQ,则abcdac,bd”;“a,bR,则ab0ab”类比推出“若a,bC,则ab0ab”;“若xR,则|x|11x1”类比推出“若zC,则|z|11z1.”其中类比结论正确的个数为()A1B2C3D4B类比结论正确的有.演绎推理数列an的前n项和记为Sn,已知a11,an1Sn(nN*)
10、证明:(1)数列是等比数列;(2)Sn14an. 【导学号:31222222】证明(1)an1Sn1Sn,an1Sn,(n2)Snn(Sn1Sn),即nSn12(n1)Sn.2分2,又10,(小前提)故是以1为首项,2为公比的等比数列(结论)(大前提是等比数列的定义,这里省略了)5分(2)由(1)可知4(n2),Sn14(n1)4Sn14an(n2),(小前提)8分又a23S13,S2a1a21344a1,(小前提)对于任意正整数n,都有Sn14an.(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)12分规律方法演绎推理的一般模式为三段论,三段论推理的依据是:如果集合M的所有
11、元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论变式训练3如图643所示,D,E,F分别是BC,CA,AB上的点,BFDA,且DEBA.求证:EDAF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来)图643证明(1)同位角相等,两条直线平行,(大前提)BFD与A是同位角,且BFDA,(小前提)所以DFEA.(结论)5分(2)两组对边分别平行的四边形是平行四边形,(大前提)DEBA且DFEA,(小前提)所以四边形AFDE为平行四边形(结论)8分(3)平行四边形的对边相等,(大前提)
12、ED和AF为平行四边形的对边,(小前提)所以EDAF.(结论)上面的证明可简略地写成:四边形AFDE是平行四边形EDAF.12分思想与方法1合情推理的过程概括为2演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论数学问题的证明主要通过演绎推理来进行易错与防范1在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误2合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明3演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严谨
13、性,书写格式的规范性课时分层训练(三十五)合情推理与演绎推理A组基础达标(建议用时:30分钟)一、选择题1正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理()A结论正确B大前提不正确C小前提不正确D全不正确C因为f(x)sin(x21)不是正弦函数,所以小前提不正确2如图644,根据图中的数构成的规律,得a表示的数是() 【导学号:31222223】图644A12B48C60D144D由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a1212144.3某种树的分枝生长规律如图645所示,第1年到第5年的分枝数分别为1,1
14、,2,3,5,则预计第10年树的分枝数为() 【导学号:31222224】图645A21B34C52D55D因为211,321,532,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为213455.4如图646所示,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于()图646A.B.C.1D.1A设“黄金双曲线”方程为1,则B(0,b),F(c,0),A(a,0)在“黄金双曲线”中,因为,所以0.又(c,b),(a,b)所以b2ac.而b2c2a2,所以c2a2ac.在等号两边同除以a2,得e.5下面
15、四个推导过程符合演绎推理三段论形式且推理正确的是()A大前提:无限不循环小数是无理数;小前提:是无理数;结论:是无限不循环小数B大前提:无限不循环小数是无理数;小前提:是无限不循环小数;结论:是无理数C大前提:是无限不循环小数;小前提:无限不循环小数是无理数;结论:是无理数D大前提:是无限不循环小数;小前提:是无理数;结论:无限不循环小数是无理数BA中小前提不正确,C、D都不是由一般性结论到特殊性结论的推理,所以A、C、D都不正确,只有B的推导过程符合演绎推理三段论形式且推理正确二、填空题6把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆
16、半径r(其中a,b为直角三角形两直角边长)类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R_.由平面类比到空间,把矩形类比为长方体,从而得出外接球半径为.7观察下列不等式:1,1,1,照此规律,第五个不等式为_ 【导学号:31222225】1左边的式子的通项是1,右边式子的分母依次增加1,分子依次增加2,还可以发现右边分母与左边最后一项分母的关系,所以第五个不等式为1.8(2017东北三省四市一联)在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀当他们被问到谁得到了优秀时,丙说“甲没有得优秀”,乙说“我得了优秀”,甲说“丙说的是真话”事实证明,在这三名同学中,只
17、有一人说的是假话,那么得优秀的同学是_丙如果丙说的是假话,则“甲得优秀”是真话,又乙说“我得了优秀”是真话,所以矛盾;若甲说的是假话,即“丙说的是真话”是假的,则说明“丙说的是假的”,即“甲没有得优秀”是假的,也就是说“甲得了优秀”是真的,这与乙说“我得了优秀”是真话矛盾;若乙说的是假话,即“乙没得优秀”是真的,而丙说“甲没得优秀”为真,则说明“丙得优秀”,这与甲说“丙说的是真话”符合所以三人中说假话的是乙,得优秀的同学是丙三、解答题9平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S底高;(3)三角形的中位线平行于第三边且等
18、于第三边的;请类比上述性质,写出空间中四面体的相关结论解由三角形的性质,可类比得空间四面体的相关性质为:(1)四面体的任意三个面的面积之和大于第四个面的面积;4分(2)四面体的体积V底面积高;8分(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的.12分10设f(x),先分别求f(0)f(1),f(1)f(2),f(2)f(3),然后归纳猜想一般性结论,并给出证明. 【导学号:31222226】解f(0)f(1),2分同理可得:f(1)f(2),f(2)f(3),并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1x21时,均有f(x1)f(x2).6分证明:设x1x2
19、1,f(x1)f(x2).12分B组能力提升(建议用时:15分钟)1给出以下数对序列:(1,1);(1,2)(2,1);(1,3)(2,2)(3,1);(1,4)(2,3)(3,2)(4,1);记第i行的第j个数对为aij,如a43(3,2),则anm()A(m,nm1)B(m1,nm)C(m1,nm1)D(m,nm)A由前4行的特点,归纳可得:若anm(a,b),则am,bnm1,anm(m,nm1)2(2016全国卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数
20、字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_1和3法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.3某同学在一
21、次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213cos217sin13cos 17;sin215cos215sin 15cos 15;sin218cos212sin18cos12;sin2(18)cos248sin(18)cos 48;sin2(25)cos255sin(25)cos 55.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论解(1)选择式,计算如下:sin215cos215sin 15cos 151sin 301.5分(2)法一:三角恒等式为sin2cos2(30)sin cos(30).
22、7分证明如下:sin2cos2(30)sin cos(30)sin2(cos 30cos sin 30sin )2sin (cos 30cos sin 30sin )sin2cos2sin cos sin2sin cos sin2sin2cos2.12分法二:三角恒等式为sin2 cos2(30)sin cos(30).7分证明如下:sin2cos2(30)sin cos(30)sin (cos 30 cos sin 30sin )cos 2(cos 60cos 2sin 60sin 2)sin cos sin2cos 2cos 2sin 2sin 2(1cos 2)1cos 2cos 2.12分