1、132“杨辉三角”与二项式系数的性质一、复习引入:1二项式定理及其特例:(1),(2).2二项展开式的通项公式: 3求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 二、讲解新课:1二项式系数表(杨辉三角)展开式的二项式系数,当依次取时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和 2二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是,例当时,其图象是个孤立的点(如图)(1)对称性与首末两端“等距离”的两个二项式系数相等()直线是图象的对称轴(2)增减性与最大值,相对于的增减情况由决定,当时,二
2、项式系数逐渐增大由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,令,则 三、讲解范例:例1在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和例2已知,求:(1); (2); (3).解: 例3.求(1+x)+(1+x)2+(1+x)10展开式中x3的系数解:例4.在(x2+3x+2)5的展开式中,求x的系数解:例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:例6 设,当时,求的值解:例7求证:证例8在的展开式中,求:二项式系数的和;各项系数的和;奇数项的二项式系数和与偶数项的二项式系数和;奇数项系数和与偶数项系数和;的奇次项系数和与的偶次项系数和.例9已知的展开式的系数和比的展开式的系数和大992,求的展开式中:二项式系数最大的项;系数的绝对值最大的项.解:例10已知:的展开式中,各项系数和比它的二项式系数和大(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项解:例11已知,求证:当为偶数时,能被整除