1、江苏省泗洪县洪翔中学2019-2020学年高一数学下学期第一次月考试题一、单选题(本大题共有8小题,每题5分,共计40分。请把答案写在答题卡相应位置,否则不得分)1对于棱锥,下列叙述正确的是( )A四棱锥共有四条棱B五棱锥共有五个面C六棱锥共有六个顶点D任何棱锥都只有一个底面2直线的倾斜角为( )ABCD3在中,角,的对边分别为,且,则的形状是( )A等腰三角形B直角三角形C等腰直角三角形D等腰或直角三角形4在ABC中,若,则等于( )A1BCD5正方体的全面积是,它的顶点都在球面上,这个球的表面积是( )ABCD6已知两条直线,两个平面,则下列正确的是( )A若,则B若,则C若,则D若,则7
2、如图所示的正方形中,分别是,的中点,现沿,把这个正方形折成一个四面体,使,重合为点,则有( )A平面B平面C平面D平面8如图,棱长为的正方体中,为中点,这直线与平面所成角的正切值为( )ABCD二、多选题(本大题共有4小题,每题5分,共计20分。请把答案写在答题卡相应位置,否则不得分)9以下结论中,正确的是( )A过平面外一点P,有且仅有一条直线与平行B过平面外一点P,有且仅有一个平面与平行C过直线l外一点P,有且仅有一条直线与l平行D过直线l外一点P,有且仅有一个平面与l平行10有下列命题:其中错误的是( )A若直线的斜率存在,则必有倾斜角与之对应;B若直线的倾斜角存在,则必有斜率与之对应;
3、C坐标平面上所有的直线都有倾斜角;D坐标平面上所有的直线都有斜率11在中,分别是角的对边,为钝角,且,则下列结论中正确的是( )ABCD12在中,角,所对的边分别为,且,则下列结论正确的是( )AB是钝角三角形C的最大内角是最小内角的倍D若,则外接圆半径为三、填空题(本大题共有4小题,每题5分,共计20分。请把答案写在答题卡相应位置,否则不得分)13在中,是边上的中线,若,则_14若正四棱锥的底面边长为,侧面积为,则它的体积为_15过点,并且在两轴上的截距互为相反数的直线方程是_16直三棱锥中,底面为等腰直角三角形且斜边,是的中点.若,则异面直线与所成的角为_.四、解答题(本题共有6小题,共7
4、0分,写出相应的解答过程或者推理过程,否则不得分)17(10分)已知ABC的三个顶点分别为A(3,0),B(2,1),C(2,3),试求:(1)边AC所在直线的方程;(2)BC边上的中线AD所在直线的方程;(3)BC边上的高AE所在直线的方程.18(12分)如图,已知矩形和直角梯形,为的中点. (1)求证:平面;(2)求证:.19(12分)在中,角对应的边分别是,且.(1)求;(2)若,求的面积.20(12分)在 中,角所对的边分别为,已知,(1)求的大小;(2)若,求的取值范围.21(12分)如图(1),等腰梯形,分别是的两个三等分点,若把等腰梯形沿虚线、折起,使得点和点重合,记为点, 如图
5、(2)(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值22(12分)在中,角,的对边分别为,且.(1)求的大小;(2)若,且,求参考答案1D 2D 3B 4.C.5B 6A 7A 8C 9BC. 10BD 11ABD 12ACD 13 14 15或1660.17(1)3xy+90(2)2x3y+60(3)2xy+60(1)A(3,0),C(2,3),故边AC所在直线的方程为:,即3xy+90,(2)BC边上的中点D(0,2),故BC边上的中线AD所在直线的方程为,即2x3y+60,(3)BC边斜率k,故BC边上的高AE的斜率k2,故BC边上的高AE所在直线的方程为y2(x+3),即
6、2xy+60.18 【详解】(1)连接交于,连接,则点为的中点,为的中点,平面,平面,平面;(2)四边形为矩形,则,又,在直角梯形中,平面,平面,为的中点,平面,平面,.19【详解】解:(1)因为,由正弦定理,可得,即.又因为,所以.又因为,所以.又因为,所以.(2)因为,所以.由正弦定理,可得.又.所以.20(1),6分(2)由正弦定理得:,即:12分21 【详解】(1)证明:四边形为等腰梯形,是 的两个三等分点,四边形是正方形,且,面,又平面,平面平面;(2)过点作于点,过点作的平行线交于点,则面,以为坐标原点,以,所在直线分别为轴、轴、轴建立空间直角坐标系,如图所示:则,,,设平面的法向量,则,取,得,设平面的法向量,则,取,得:,设平面与平面所成锐二面角为,则平面与平面所成锐二面角的余弦值为22【详解】(1)由正弦定理得:,即,.,.(2),由余弦定理得:,解得:.