1、2019年秋四川省泸县第五中学高三期末考试理科数学试题第I卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只 有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1已知集合,则 ABCD2若是虚数单位,在复平面内复数表示的点在 A第一象限B第二象限C第三象限D第四象限3命题“且”的否定形式是 A且B或C且D或4设中边上的中线为,点O满足,则 A BCD5已知则 ABCD6现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖
2、”,四人所说话中只有一位是真话,则获奖的人是 A甲B乙C丙D丁7我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53那么十二进制数66用二进制可表示为 A1001110B1000010C101010D1110008将函数的图像上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得图像向左平移个单位后得到的函数图像关于原点中心对称,则 ABCD9已知点是圆上任意一点,则点到直线距离最大值为 ABCD10已知双曲线:(,)的左、右顶点分别为,左焦点为,为上一点
3、,且轴,过点的直线与线段交于点,与轴交于点,直线与轴交于点,若(为坐标原点),则的离心率为 A3B2CD11已知三棱锥四个顶点均在半径为的球面上,且,若该三棱锥体积的最大值为,则这个球的表面积为 ABCD12已知定义在上的可导函数的导函数为,满足是偶函数,则不等式的解集为 ABCD第卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13已知,满足,则的最大值为_.14已知为数列的前项和,且,则_.15的展开式中含项的系数为_.16已知抛物线的焦点为F,定点若射线FA与抛物线C相交于点M(点M在F、A中间),与抛物线C的准线交于点N,则_.三、解答题(共70分,解答应写出
4、文字说明、证明过程或演算步骤,第17 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17(12分)已知向量,函数.(1)求函数的最小正周期;(2)若,求的值;18(12分)习近平总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(
5、1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.19(12分)在如图所示的几何体中,四边形是菱形,四边形是矩形,平面平面,为的中点,为线段上的一点.(1)求证:;(2)若二面角的大小为,求的值.20(12分)已知抛
6、物线:,直线:.(1)若直线与抛物线相切,求直线的方程;(2)设,直线与抛物线交于不同的两点,若存在点,满足,且线段与互相平分(为原点),求的取值范围.21(12分)已知函数讨论函数的单调性;设,对任意的恒成立,求整数的最大值;求证:当时,(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 选修4-4:坐标系与参数方程(10分)已知曲线C的参数方程为 (为参数),以直角坐标系原点为极点,x轴非负半轴为极轴并取相同的单位长度建立极坐标系,(1)求曲线C的极坐标方程,并说明其表示什么轨迹;(2)若直线l的极坐标方程为,求曲线C上的点到直线l的最大距
7、离23 选修4-5:不等式选讲(10分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.2019年秋四川省泸县第五中学高三期末考试理科数学试题参考答案1B2D3B4A5D6B7A8C9D10A11B12A135148531551617(1)函数的最小正周期.(2), , ,.18(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,所以,.所以所求线性回归方程为.19(1)连接.在菱形中,为等边三角形.又为的中点,.又,.四边形为矩形,.又平面平面,平面平面,平面,平面.
8、平面,.又平面.平面,.(2)由(1)知平面,平面,。两两垂直.以为坐标原点,所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则,设,则,.设平面的法向量为,则,即,令,则.由图形知,平面的一个法向量为,则,即,即.,解得,的值为.20解:(1)法1:由得 所以,所求的切线方程为 法2:因为直线恒过(0,-4),所以由得设切点为,由题可得,直线与抛物线在轴下方的图像相切,则 所以切线方程为,将坐标(0,-4)代入得即切点为(8,-8),再将该点代入得,所以,所求的切线方程为 (2)由得且,所以, 因为线段OC与AB互相平分,所以四边形OACB为平行四边形,即C由得, 法1:所以=-1
9、又,又所以,所以法2:因为 又,即 21(1)函数 f(x)(aR ),x0,当a0时,f(x)0,f(x)在(0,+)单调递增当a0时,f(x)0,f(x)在(0,+)单调递增当a0时,令f(x)0,解得:0x,令f(x)0,解得:x,故f(x)在(0,)递增,在(,+)递减(2)当时,则f(1)2a+30,不满足f(x)0恒成立若a0,由(1)可知,函数f(x)在(0,)递增,在(,+)递减,又f(x)0恒成立,f(x)max0,即0,令g(a)=,则g(a)单调递增,g(-1)=1,g(-2)=0,a时,g(a) 0恒成立,此时f(x)0恒成立,整数的最大值-2(3)由(2)可知,当a-
10、2时,f(x)0恒成立,即lnx2x2+10即xlnx2x3+x0,恒成立,又exx2+2x1+()只需证exx2+2x1,记g(x)exx2+2x1(x0),则g(x)ex2x+2,记h(x)ex2x+2,则h(x)ex2,由h(x)0,得xln2当x(0,ln2)时,h(x)0;当x(ln2,+)时,h(x)0函数h(x)在(0,ln2)上单调递减;在(ln2,+)上单调递增42ln20h(x)0,即g(x)0,故函数g(x)在(0,+)上单调递增g(x)g(0)e010,即exx2+2x10结合exx2+2x1+()0,即0成立22由得两式两边平方并相加,得.所以曲线表示以为圆心,为半径的圆.将代入得,化简得.所以曲线的极坐标方程为.由,得,即,得.所以直线的直角坐标方程为.因为圆心到直线的距离.所以曲线上的点到直线的最大距离为.23(1)当时,由,得,即,或,即,或,即,综上:或,所以不等式的解集为.(2),因为,所以,又,得.不等式恒成立,即在时恒成立,不等式恒成立必须,解得.所以,解得,结合,所以,即的取值范围为.