收藏 分享(赏)

2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc

上传人:高**** 文档编号:323500 上传时间:2024-05-27 格式:DOC 页数:7 大小:72.50KB
下载 相关 举报
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第1页
第1页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第2页
第2页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第3页
第3页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第4页
第4页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第5页
第5页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第6页
第6页 / 共7页
2018高考一轮数学(浙江专版)(练习)第8章 第4节 课时分层训练46 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时分层训练(四十六)直线与圆、圆与圆的位置关系A组基础达标(建议用时:30分钟)一、选择题1已知点M(a,b)在圆O:x2y21外,则直线axby1与圆O的位置关系是()A相切B相交C相离D不确定B由题意知点在圆外,则a2b21,圆心到直线的距离d1,故直线与圆相交2若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21B19C9D11C圆C1的圆心为C1(0,0),半径r11,因为圆C2的方程可化为(x3)2(y4)225m,所以圆C2的圆心为C2(3,4),半径r2(m0)相交于A,B两点,且AOB120(O为坐标原点),则r_.2如图,过点O作ODAB于点D,则|OD|

2、1.AOB120,OAOB,OBD30,|OB|2|OD|2,即r2.8(2017浙江金华十校联考)已知圆C:(x2)2y24,直线l:kxy2k0(kR),若直线l与圆C恒有公共点,则实数k的最小值是_. 【导学号:51062277】圆心C(2,0),半径r2.又圆C与直线l恒有公共点所以圆心C(2,0)到直线l的距离dr.因此2,解得k.所以实数k的最小值为.三、解答题9已知圆C:x2y24x6y120,点A(3,5)(1)求过点A的圆的切线方程;(2)O点是坐标原点,连接OA,OC,求AOC的面积S.解(1)由圆C:x2y24x6y120,得(x2)2(y3)21,圆心C(2,3)当斜率

3、存在时,设过点A的圆的切线方程为y5k(x3),即kxy53k0.3分由d1,得k.又斜率不存在时直线x3也与圆相切,故所求切线方程为x3或3x4y110.6分(2)直线OA的方程为yx,即5x3y0,又点C到OA的距离d.12分又|OA|.所以S|OA|d.15分10(2017宁波镇海中学模拟)已知定点M(0,2),N(2,0),直线l:kxy2k20(k为常数)(1)若点M,N到直线l的距离相等,求实数k的值;(2)对于l上任意一点P,MPN恒为锐角,求实数k的取值范围解(1)点M,N到直线l的距离相等,lMN或l过MN的中点M(0,2),N(2,0),直线MN的斜率kMN1,MN的中点坐

4、标为C(1,1).3分又直线l:kxy2k20过定点D(2,2),当lMN时,kkMN1;当l过MN的中点时,kkCD.综上可知,k的值为1或.6分(2)对于l上任意一点P,MPN恒为锐角,l与以MN为直径的圆相离,即圆心(1,1)到直线l的距离大于半径,10分d,解得k1.15分B组能力提升(建议用时:15分钟)1若圆C1:x2y22axa290(aR)与圆C2:x2y22byb210(bR)内切,则ab的最大值为()A.B2C4D2B圆C1:x2y22axa290(aR)化为(xa)2y29,圆心坐标为(a,0),半径为3.圆C2:x2y22byb210(bR),化为x2(yb)21,圆心

5、坐标为(0,b),半径为1.圆C1:x2y22axa290(aR)与圆C2:x2y22byb210(bR)内切,31,即a2b24,ab(a2b2)2.ab的最大值为2.2(2017杭州质检)过点P(1,)作圆x2y21的两条切线,切点分别为A,B,则_. 【导学号:51062278】如图所示,可知OAAP,OBBP,OP2.又OAOB1,可以求得APBP,APB60.故cos 60.3已知圆C的方程为x2(y4)24,点O是坐标原点,直线l:ykx与圆C交于M,N两点(1)求k的取值范围;(2)直线l能否将圆C分割成弧长的比为的两段弧?若能,求出直线l的方程;若不能,请说明理由解(1)将ykx代入圆C的方程x2(y4)24.得(1k2)x28kx120.2分直线l与圆C交于M,N两点,(8k)2412(1k2)0,得k23,(*)k的取值范围是(,)(,).6分(2)假设直线l将圆C分割成弧长的比为的两段弧,则劣弧所对的圆心角MCN90,由圆C:x2(y4)24知圆心C(0,4),半径r2.9分在RtMCN中,可求弦心距drsin 45,故圆心C(0,4)到直线kxy0的距离,1k28,k,经验证k满足不等式(*),12分故l的方程为yx.因此,存在满足条件的直线l,其方程为yx.15分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3