收藏 分享(赏)

《首发》天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(学生版).doc

上传人:a**** 文档编号:321526 上传时间:2025-11-27 格式:DOC 页数:2 大小:216.50KB
下载 相关 举报
《首发》天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(学生版).doc_第1页
第1页 / 共2页
《首发》天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(学生版).doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

高考资源网() 您身边的高考专家导函数含参问题的基本讨论点1、求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。例1:设,函数,试讨论函数的单调性。2、求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,从而引起讨论。例2:已知是实数,函数。(1)求函数的单调区间;(2)设为在区间上的最小值。 写出的表达式; 求的取值范围,使得。3、求导后,导函数为零有实根(或导函数的分子能分解因式),导函数为零的实根也落在定义域内,但不知这些实根的大小关系,从而引起讨论。例3:已知函数,其中。(1)当时,求曲线在点处的切线方程;(2)当时,求函数的单调区间与极值。例4:设函数,其中,求函数的极值点。练习1:已知函数,其中常数,是奇函数。(1)求的表达式;(2)讨论的单调性,并求在区间上的最大值和最小值。练习2:已知函数。(I)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性。练习3:已知函数。(1)当时,讨论的单调性;(2)设,当时,若对任意,存在,使不等式成立,求实数的取值范围。- 2 - 版权所有高考资源网(山东、北京、天津、云南、贵州)五地区试卷投稿QQ 858529021

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1