收藏 分享(赏)

2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc

上传人:高**** 文档编号:311464 上传时间:2024-05-27 格式:DOC 页数:8 大小:306.50KB
下载 相关 举报
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第1页
第1页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第2页
第2页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第3页
第3页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第4页
第4页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第5页
第5页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第6页
第6页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第7页
第7页 / 共8页
2020-2021学年数学人教A版必修4教学教案:3-2 简单的三角恒等变换 WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、主备人科目数学年级班次课题3.2 简单的三角恒等变换课时共1课时3.2 简单的三角恒等变换整体设计教学分析 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结

2、构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换

3、在数学中的应用.3.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学过程导入新课复习导入:三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公

4、式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.提出问题与有什么关系?如何建立cos与sin2之间的关系?sin2=,cos2=,tan2=这三个式子有什么共同特点?通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?证明(1)

5、sincos=sin(+)+sin(-);(2)sin+sin=2sin.并观察这两个式子的左右两边在结构形式上有何不同? 活动:教师引导学生联想关于余弦的二倍角公式cos=1-2sin2,将公式中的用代替,解出sin2即可.教师对学生的讨论进行提问,学生可以发现:是的二倍角.在倍角公式cos2=1-2sin2中,以代替2,以代替,即得cos=1-2sin2,所以sin2=. 在倍角公式cos2=2cos2-1中,以代替2,以代替,即得cos=2cos2-1,所以cos2=. 将两个等式的左右两边分别相除,即得tan2=. 教师引导学生观察上面的式,可让学生总结出下列特点:(1)用单角的三角函

6、数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的).教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin=,cos=,tan=,并称之为半角公式(不要求记忆),符号由所在象限决定. 教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当

7、公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换. 对于问题:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sincos呢?想到sin(+)=sincos+cossin.从方程角度看这个等式,sincos,cossin分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sincos的公式,列出sin(-)=sincos-cossin后,解相应的以sincos,cossin为未知数的二元一次方程组,就容易

8、得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令+=,-=,则=,=,代入(1)式即得(2)式.证明:(1)因为sin(+)=sincos+cossin,sin(-)=sincos-cossin,将以上两式的左右两边分别相加,得sin(+)+sin(-)=2sincos,即sincos=sin(+)+sin(-).(2)由(1),可得sin(+)+sin(-)=2sincos.设+=,-=,那么=,=.把,的值代入,即得sin+sin=2sincos.讨论结果:是的二倍角.sin2=

9、1-cos.略(见活动).应用示例例1 化简: 解:原式=tan. 化简:sin50(1+tan10).解:原式=sin50=2sin50=2cos40=1.例2 已知sinx-cosx=,求sin3x-cos3x的值. 解:由sinx-cosx=,得(sinx-cosx)2=,即1-2sinxcosx=,sinxcosx=.sin3x-cos3x=(sinx-cosx)(sin2x+sinxcosx+cos2x)=(1+)=. 已知sin+cos=,且,则cos2的值是_.答案:例3 已知.证明一:,cos4Asin2B+sin4Acos2B=sin2Bcos+B.cos4A(1-cos2B

10、)+sin4Acos2B=(1-cos2B)cos2B,即cos4A-cos2B(cos4A-sin4A)=cos2B-cos4B.cos4A-2cos2Acos2B+cos4B=0.(cos2A-cos2B)2=0.cos2A=cos2B.sin2A=sin2B.cos2B+sin2B=1.证明二:令=sin,则cos2A=cosBcos,sin2A=sinBsin.两式相加,得1=cosBcos+sinBsin,即cos(B-)=1.B-=2k(kZ),即B=2k+(kZ).cos=cosB,sin=sinB.cos2A=cosBcos=cos2B,sin2A=sinBsin=sin2B.

11、=cos2B+sin2B=1.变式训练 在锐角三角形ABC中,ABC是它的三个内角,记S=,求证:S90,90A90-B0.tanAtan(90-B)=cotB0,tanAtanB1.S0.tan(-2)0.又(0,),-20,得0-2.由tan=tan(-2),得=-2,即+2=.例5 求证:证明:证法一:左边=右边.原式成立.证法二:右边=1-=左边.原式成立.变式训练1.求证:.证明:原等式等价于.而上式左边=tan2右边.上式成立,即原等式得证.2.已知sin=msin(2+),求证:tan(+)=tan. 证明:由sin=msin(2+)sin(+)-=msin(+)+sin(+)c

12、os-cos(+)sin=m0sin(+)cos+cos(+)sin(1-m)sin(+)cos=(1+m)cos(+)sintan(+)=tan.知能训练1.若sin=,在第二象限,则tan的值为( )A.5 B.-5 C. D.2.设56,cos=,则sin等于( )A. B. C. D.3.已知sin=,3,则tan_.解答:1.A 2.D 3.-3课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方

13、程思想,等价转化,三角恒等变形的基本手段.作业课本习题3.2 B组2.设计感想1.本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换.在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用,应用诱导公式时符号问题也是常出错的地方.考试大纲对本部分的具体要求是:用向量的数量积推导出两角差的余弦公式,体会向量方法的作用.从两角差的余弦公式进而推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3