1、第4讲 数列求和A组基础巩固一、单选题1.已知数列an是公差不为零的等差数列,bn为等比数列,且a1b11,a2b2,a4b3,设cnanbn,则数列cn的前10项和为( A )A.1 078 B1 068 C566 D556解析设等差数列an的公差为d0,等比数列bn的公比为q,根据a1b11,a2b2,a4b3,利用通项公式即可解得d,q,再利用求和公式即可得出结论.设等差数列an的公差为d0,等比数列bn的公比为q,a1b11,a2b2,a4b3,1dq,13dq2,d0,解得:d1,q2.an1n1n,anbnn2n1.则数列cn的前10项和1 078.故选A.2.已知数列an满足a1
2、16,(n1)an12(n2)an,则an的前100项和为( D )A.252102 B252103C.252104 D252105解析因为(n1)an12(n2)an,a116,所以,8.所以数列是以8为首项,2为公比的等比数列,则82n12n2,即an(n1)2n2,设an的前n项和为Sn,则Sn223324425(n1)2n2,则2Sn224325426n2n2(n1)2n3,两式相减得Sn2232425262n2(n1)2n32(n1)2n3n2n3,所以Snn2n3,所以S1001002103252105,选D.3.已知数列an的通项公式是an,其前n项和Sn,则项数n等于( D )
3、A.13 B10 C9 D6解析an1,Snnn1.而5,n15.n6.4.设数列an的通项公式为an(1)n(2n1)cos 1,其前n项和为Sn,则S2 022( D )A.4 041 B5 C2 021 D4 045解析根据题意,分类讨论n4k3或n4k1,kN*时,cos 0,n4k2,kN*时,cos 1,n4k,kN*时,cos 1,即可得出答案.an(1)n(2n1)cos 1,当n4k3或n4k1,kN*时,cos 0,a4k3a4k11;当n4k2,kN*时,cos 1,a4k22(4k2)1(1)18k4;当n4k,kN*时,cos 1,a4k24k118k2,a4k3a4
4、k2a4k1a4k0,S2 022S2 020a2 021a2 022a2 021a2 0221(22 0221)(1)14 045,故选D.5.已知数列an满足a11,且对任意的nN*都有an1a1ann,则的前100项和为( D )A. B C D解析an1a1ann,a11,an1an1n.anan1n(n2).an(anan1)(an1an2)(a2a1)a1n(n1)21.2.的前100项和为22.故选D.6.(2022重庆调研)已知数列an满足an,则a1( A )A. BC. D解析由题知,数列an满足an,所以数列的通项公式为,所以a111.7.在数列an中,已知对任意nN*,
5、a1a2a3an3n1,则aaaa等于( B )A.(3n1)2 B(9n1)C.9n1 D(3n1)解析因为a1a2an3n1,所以a1a2an13n11(n2).则当n2时,an23n1.当n1时,a1312,适合上式,所以an23n1(nN*).则数列a是首项为4,公比为9的等比数列,aa(9n1).故选B.8.(2023辽宁凌源二中联考)已知数列an与bn的前n项和分别为Sn,Tn,且an0,6Sna3an,nN*,bn,若对任意的nN*,kTn恒成立,则k的最小值是( C )A. B49 C D解析当n1时,6a1a3a1,解得a13或a10(舍去),又6Sna3an,6Sn1a3a
6、n1,两式作差可得6an1aa3an13an,整理可得(an1an)(an1an3)0,结合an0可得an1an30,an1an3,故数列an是首项为3,公差为3的等差数列,an3(n1)33n,则bn,Tn0,bnan,当n5时,an0,解得q2.所以bn2n.由b3a42a1,可得3da18,由S1111b4,可得a15d16,联立,解得a11,d3,由此可得an3n2.所以数列an的通项公式为an3n2,数列bn的通项公式为bn2n.(2)设数列a2nb2n1)的前n项和为Tn,由a2n6n2,b2n124n1,有a2nb2n1(3n1)4n,故Tn24542843(3n1)4n,4Tn242543844(3n4)4n(3n1)4n1,上述两式相减,得3Tn2434234334n(3n1)4n14(3n1)4n1(3n2)4n18.得Tn4n1.所以数列a2nb2n1的前n项和为4n1.