1、河南省确山县第二高级中学高中数学 第2章 第1节 指数的运算性质教学案(无答案)新人教A版必修1【教学主题】2.2指数的运算性质一教学目标1 掌握根式与分数指数幂互化;2 能熟练地运用有理指数幂运算性质进行化简,求值.二.知识梳理1运用有理指数幂性质进行化简,求值.2. 有理指数幂性质的灵活应用.三. 教学过程 1复习分数指数幂的概念与其性质2例题讲解例1(P60,例4)计算下列各式(式中字母都是正数)(1)(2)(先由学生观察以上两个式子的特征,然后分析、提问、解答)分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运
2、算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式= = =4 (2)原式= =例2(P61 例5)计算下列各式(1)(2)0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式= = = = = (2)原式=小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.课堂练习:化简:(1)(2)(3) 归纳小结:1 熟练掌握有理指数幂的运算法则,化简的基础.2含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.作业:【教学目标】【知识梳理】【典型例题】