收藏 分享(赏)

《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc

上传人:高**** 文档编号:257242 上传时间:2024-05-27 格式:DOC 页数:6 大小:436KB
下载 相关 举报
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第1页
第1页 / 共6页
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第2页
第2页 / 共6页
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第3页
第3页 / 共6页
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第4页
第4页 / 共6页
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第5页
第5页 / 共6页
《二轮精品》上海市17区县2013届高三一模(数学理科)分类汇编:专题十二 应用题 WORD版含答案.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题十二 应用题2013年2月(杨浦区2013届高三一模 理科)12如图,已知边长为8米的正方形钢板有一个角锈蚀, 其中米,米. 为了合理利用这块钢板,将在五边 形内截取一个矩形块,使点在边上. 则矩形面积的最大值为_ 平方米 . 12 48;(松江区2013届高三一模 理科)21(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分“活水围网”养鱼技术具有养殖密度高、经济效益好的特点研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当

2、达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)。(1)当时,求函数的表达式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值21解:(1)由题意:当时,; 2分当时,设,显然在是减函数,由已知得,解得 4分故函数= 6分(2)依题意并由(1)可得 8分当时,为增函数,故; 10分当时, 12分所以,当时,的最大值为 当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为千克/立方米 (浦东新区2013届高三一模 理科)20(本小题满分14分,第1小题满分6分,第2小题满分8分)世博中学为了落实上海市教委推出的“阳光运动一小时”活动,计划

3、在一块直角三角形的空地上修建一个占地面积为的矩形健身场地,如图点M在上,点N在上,且P点在斜边上,已知且米,.(1)试用表示,并求的取值范围;(2)设矩形健身场地每平方米的造价为,再把矩形以外(阴影部分)铺上草坪, 每平方米的造价为(为正常数),求总造价关于的函数; 试问如何选取的长使总造价最低(不要求求出最低造价).解:(1)在中,显然,2分 矩形的面积,4分于是为所求.6分(2) 矩形健身场地造价 7分又的面积为,即草坪造价,8分由总造价,.10分,11分当且仅当即时等号成立,12分此时,解得或,所以选取的长为12米或18米时总造价最低.14分(黄浦区2013届高三一模 理科)21(本题满

4、分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分如图所示,是一个矩形花坛,其中AB= 6米,AD = 4米现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于150平方米 (1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积21(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分解:(1)由NDCNAM,可得,即,3分故, 5分由且,可得,解得,故所求函数的解析式为,定义域为 8分(2)令,则由,可得,故 10分, 12分当且仅当,即时又,

5、故当时,取最小值96故当的长为时,矩形的面积最小,最小面积为平方米 14分(长宁区2013届高三一模)21、(本题满分14分)(理)经过统计分析,公路上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当公路上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过公路上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)(文)某工厂生产一种产品的原材料费为每件40元,

6、若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)21、(理)解(1)由题意:当时,;当时,设 2分 再由已知得解得 4分 故函数v(x)的表达式为7分(2)依题意并由(1)可得, 9分 当时,为增函数.故当x=20时,其最大值为6020=1200;

7、 当时, 当且仅当,即时,等号成立. 所以,当时,在区间20,200上取得最大值. 12分 综上,当时,在区间0,200上取得最大值. 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时. 14分(文)解:(1) 3分由基本不等式得 当且仅当,即时,等号成立 6分,成本的最小值为元 7分(2)设总利润为元,则 10分 当时, 13分答:生产件产品时,总利润最高,最高总利润为元 14分(奉贤区2013届高三一模)21、某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。(1)求曲线的标准方程;(6分)(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?(8分)21、解(1)由题意知曲线是以、为焦点且长轴长为8的椭圆 3分 又,则,故 5分 所以曲线的方程是 6分(2)由于、两岛收到鱼群发射信号的时间比为,因此设此时距、两岛的距离分别比为 7分即鱼群分别距、两岛的距离为5海里和3海里。 8分设,由 , 10分, 12分 13分点的坐标为或 14分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3