1、一、学习目标:1掌握空间两条直线的位置关系,理解异面直线的概念 。2理解并掌握公理4,并能运用它解决一些简单的几何问题。二、学习重、难点学习重点:异面直线的概念、公理4 学习难点:异面直线的概念三、使用说明及学法指导:通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的教学目标。四、知识链接:平面的基本性质及其简单的应用共面问题、点共线问题、线共点问题的证明,同一平面内两条直线有几种位置关系?相交直线有且仅有一个公共点平行直线在同一平面内,没有公共点五、学习过程: A 问题1空间中的两条直线又有怎样的位置关系呢?观察教室内日光灯管所在直线与黑板的左右侧所在的直线;天安门广场上旗杆所在
2、的直线与长安街所在的直线,南京万泉河立交桥的两条公路所在的直线,它们的共同特征是什么?ABABCDCD思考:如下图,长方体ABCD-ABCD中,线段AB所在直线与线段CC所在直线的位置关系如何?A问题2:归纳总结 ,形成概念异面直线:A问题3:空间中两条直线的位置关系有三种:B问题4判断:下列各图中直线l与m是异面直线吗? 1 2 3 4 5 6B问题5辨析、空间中没有公共点的两条直线是异面直线 、分别在两个不同平面内的两条直线是异面直线、不同在某一平面内的两条直线是异面直线、平面内的一条直线和平面外的一条直线是异面直线、 、既不相交,又不平行的两条直线是异面直线 A例1:如图2.1.2-1,
3、在正方体中,哪些棱所在的直线与成异面直线? 图2.1.2-1 A问题6思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。空间中,如果两条直线都与第三条直线平行,是否也有类似的规律?观察:如图2.1.2-2,长方体中,AA1, AA1,那么与平行吗?A问题7公理4:平行于同一条直线的两条直线互相平行。=c符号表示为:设、b、c是三条直线 bbc注:公理4实质上是说平行具有传递性,在平面、空间此性质都适用;公理4作用:判断空间两条直线平行的依据。A例2:如图在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。 求证:四边形EFGH是平行四边形。 六、达标
4、训练A1设直线、b分别是长方体相邻两个面的对角线所在的直线,则、b的位置关系是B2一条直线与两条异面直线中的一条相交,那么它与另一条之间的位置关系是( ) A. 平行 B. 相交 C. 异面 D.可能相交、可能平行、可能异面B3.已知、b是异面直线,c,那么c与b( ) A.一定是异面直线 B.一定是相交直线 C. 不可能是平行直线 D.不可能是相交直线 七、小结与反思:(1)空间中两直线有何位置关系?(平行、相交、异面)(2)怎样判断两直线是异面直线?(判断关键:既不平行又不相交)(3)什么是平行公理?它的作用是什么?(平行同一条直线的两条直线互相平行作用:判断两直线平行它将空间平行问题转化为平面内的平行问题)