收藏 分享(赏)

新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc

上传人:a**** 文档编号:241237 上传时间:2025-11-21 格式:DOC 页数:9 大小:413.50KB
下载 相关 举报
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第1页
第1页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第2页
第2页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第3页
第3页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第4页
第4页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第5页
第5页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第6页
第6页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第7页
第7页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第8页
第8页 / 共9页
新教材2020-2021学年北师大版高中数学必修第二册学案:第1章 8 三角函数的简单应用 WORD版含解析.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家8三角函数的简单应用学 习 目 标核 心 素 养1.了解三角函数是研究周期现象最重要的模型(重点)2初步体会如何利用三角函数研究简单的实际问题(难点)通过三角函数的简单应用,培养数学运算与数学建模素养.利用三角函数模型解决实际问题的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象(2)画散点图,选择函数模型进行拟合(3)利用三角函数模型解决实际问题(4)根据问题的实际意义,对答案的合理性进行检验思考:在函数yAsin(x)B(A0,0)中,如何用函数的最值表示A,B?提示:因为ymaxAB,yminAB,所以A,B.1如图所示为一简谐振动的图象,则下列

2、判断正确的是()A该质点的振动周期为0.7 sB该质点的振幅为5 cmC该质点在0.1 s和0.5 s时振动速度最大D该质点在0.3 s和0.7 s时的加速度为零B由图象可知,该质点的振动周期是2(0.70.3)0.8,故A不正确;振幅为5 cm,故选B2商场人流量被定义为每分钟通过入口的人数, 五一某商场的人流量满足函数F(t)504sin (t0),则在下列哪个时间段内人流量是增加的()A0,5B5,10C10,15 D15,20C由2k 2k,kZ,知函数F(t)的增区间为4k,4k,kZ.当k1时,t3,5,而10,153,5,故选C3如图所示,单摆离开平衡位置O的位移s(单位:cm)

3、和时间t(单位:s)的函数关系为s6sin,则单摆在摆动时,从最右边到最左边的时间为()A2 sB1 sC sD sC由题意,知周期T1(s),从最右边到最左边的时间是半个周期,为 s4如图,游乐场中的摩天轮匀速转动,每转一圈需要12分钟,其中圆心O距离地面40.5米,半径为40米如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)求出你与地面的距离y(米)与时间t(分钟)的函数关系式;(2)当你第4次距离地面60.5米时,用了多长时间?解(1)由已知可设y40.540cos t,t0,由周期为12分钟可知,当t6时,摩天轮第1

4、次到达最高点,即此函数第1次取得最大值,所以6,即.所以y40.540cos t(t0)(2)设转第1圈时,第t0分钟时距地面60.5米,由60.540.540cos t0,得cost0,所以t0或t0,解得t04或t08.所以t8(分钟)时,第2次距地面60.5米,故第4次距离地面60.5米时,用了12820(分钟).三角函数模型在物理中的应用【例1】交流电的电压E(单位:V)与时间t(单位:s)的关系可用E220sin来表示,求:(1)开始时电压;(2)电压值重复出现一次的时间间隔;(3)电压的最大值和第一次获得最大值的时间思路点拨交流电压与时间的关系呈现周期性变化,t0时即为初始电压,求

5、周期和最值可直接运用性质解(1)当t0时,E110(V),即开始时的电压为110V.(2)T(s),即时间间隔为0.02 s.(3)电压的最大值为220 V.当100t,即t s时第一次取得最大值三角函数模型处理物理学问题的策略(1)常涉及的物理学问题有单摆、光波、电流、机械波等,其共同的特点是具有周期性;(2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.1单摆从某点开始来回摆动,离开平衡位置的距离s(cm)和时间t(s)的函数关系为s6sin.(1)单摆开始摆动时,离开平衡位置多少厘米?(2)单摆摆动到最右边时,离开平衡位置多少厘

6、米?(3)单摆来回摆动一次需要多少时间?解(1)当t0时,s6sin 6 3,即单摆开始摆动时,离开平衡位置3 cm.(2)s6sin的振幅为6,所以单摆摆动到最右边时,离开平衡位置6 cm.(3)s6sin的周期为1,所以单摆来回摆动一次需要的时间是1 s.三角函数模型的实际应用【例2】某港口的水深y(单位:m)是时间t(0t24,单位:h)的函数,下面是水深数据:t/h03691215182124y/m10.013.09.97.010.013.010.17.010.0根据上述数据描出曲线,如图所示,经拟合,该曲线可近似地看做函数yAsin tb的图象(1)试根据以上数据,求函数解析式;(2

7、)一般情况下,船舶航行时,船底离海底的距离不少于4.5 m时是安全的,如果某船的吃水深度(船底与水面的距离)为7 m,那么该船何时能进入港口?在港口能待多久? 思路点拨(1)根据题意确定A,b,.(2)根据题意水深y11.5可求解解(1)从拟合曲线可知,函数yAsin tb在一个周期内由最大变到最小需936(h),此为半个周期,函数的最小正周期为12 h,因此12,得.当t0时,y10,b10.ymax13,A13103.所求函数的解析式为y3sint10(0t24)(2)由于船的吃水深度为7 m,船底与海底的距离不少于4.5 m,故在船舶航行时水深y应不小于74.511.5(m)当y11.5

8、时就可以进港令y3sint1011.5,得sint ,2k t 2k(kZ),112kt512k(kZ)取k0,则1t5;取k1,则13t17;取k2,则25t29(不合题意)因此,该船可以在凌晨1点进港,5点出港或在13点进港,17点出港,每次可以在港口停留4小时若将例2中“某港口的水深y是时间t(0t24,单位:h)的函数”变为“海浪高度y(米)是时间t(时)的函数(0t24)且浪高数据如下:t03691215182124y1.51.00.51.01.51.00.50.991.5若该函数图象可近似地看成函数yAcos tb的图象试求:(1)根据以上数据,求其最小正周期,振幅及函数解析式;(

9、2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?解(1)由表中数据可知,T12,所以.又t0时,y1.5,所以Ab1.5;t3时,y1.0,得b1.0,所以振幅为,函数解析式为ycost1(0t24)(2)因为y1时,才对冲浪爱好者开放,所以ycost11,cost0,2kt2k,即12k3t12k3(kZ)又0t24,所以0t3或9t15或21t24,所以在规定时间内只有6个小时可供冲浪爱好者进行活动,即9t0)来表示,已知6月份的月平均气温最高,为28 ,12月份的月平均气温最低,为18 ,则10

10、月份的平均气温值为_.20.5由题意得y235cos,当x10时,y23520.5.6如图,某动物种群数量1月1日(t0时)低至700,7月1日高至900,其总量在此两值之间按照正弦型曲线变化(1)求出种群数量y关于时间t的函数表达式(其中t以年初以来的月为计量单位);(2)估计当年3月1日动物种群数量解(1)设种群数量y关于t的解析式为yAsin(t)b(A0,0),则解得A100,b800.又周期T2612,y100sin800.又当t6时,y900,900100sin800,sin()1,sin 1,可取,y100sin800.(2)当t2时,y100sin800750,即当年3月1日动物种群数量约是750.- 9 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1