收藏 分享(赏)

广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc

上传人:高**** 文档编号:208413 上传时间:2024-05-26 格式:DOC 页数:24 大小:1.43MB
下载 相关 举报
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第1页
第1页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第2页
第2页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第3页
第3页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第4页
第4页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第5页
第5页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第6页
第6页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第7页
第7页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第8页
第8页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第9页
第9页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第10页
第10页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第11页
第11页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第12页
第12页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第13页
第13页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第14页
第14页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第15页
第15页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第16页
第16页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第17页
第17页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第18页
第18页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第19页
第19页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第20页
第20页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第21页
第21页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第22页
第22页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第23页
第23页 / 共24页
广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析).doc_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、广东省东莞市东华高级中学2020-2021学年高二数学下学期期末考试试题(含解析)一、选择题(共8小题,每小题5分,共40分). 1已知集合Ax|5x1,Bx|x24,则AB()A(2,3)B2,3)C2,1)D(2,1)2已知i为虚数单位,若复数z,则|z|()A1B2CD3设m,n是两条不同的直线,是两个不同的平面,p:mn,若p是q的必要条件,则q可能是()Aq:m,n,Bq:m,n,Cq:m、n,Dq:m,n,4如图上半部分为一个油桃园每年油桃成熟时,园主都需要雇佣人工采摘,并沿两条路径将采摘好的油桃迅速地运送到水果集散地C处销售路径1:先集中到A处,再沿公路AC运送;路径2:先集中到

2、B处,再沿公路BC运送园主在果园中画定了一条界线,使得从该界线上的点出发,按这两种路径运送油桃至C处所走路程一样远已知AC3km,BC4km,若这条界线是曲线E的一部分,则曲线E为()A圆B椭圆C抛物线D双曲线5设X为随机变量,且,若随机变量X的方差,则P(X2)()ABCD6东莞市同沙生态公园水绕山环,峰峦叠嶂,是一个天生丽质,融山水生态与人文景观为一体的新型公园现有甲乙两位游客慕名来到同沙生态公园旅游,分别准备从映翠湖、十里河塘、计生雕塑园和鹭鸟天堂4个旅游景点中随机选择其中一个景点游玩记事件A:甲和乙至少一人选择映翠湖,事件B:甲和乙选择的景点不同,则条件概率P(B|A)()ABCD7已

3、知函数yf(x)为R上的偶函数,且对于任意的满足f(x)cosx+f(x)sinx0,则下列不等式成立的是()ABCD8“帷幄”是古代打仗必备的帐篷,又称“惺帐”如图是的一种幄帐示意图,帐顶采用“五脊四坡式”,四条斜脊的长度相等,一条正脊平行于底面若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为5:3,则正脊与斜脊长度的比值为()ABCD1二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9将曲线C1:ysinx上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单

4、位长度,得到曲线C2:yf(x),则下列结论正确的是()AB为一条对称轴Cf(x)在0,2上有4个零点Df(x)在上单调递增10如图,在棱长为a的正方体ABCDA1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中是定值的是()A点P到平面QEF的距离B直线PQ与平面PEF所成的角C三棱锥PQEF的体积DQEF的面积11设随机变量的分布列如表:12320202021Pa1a2a3a2020a2021则下列说法正确的是()A当an为等差数列时,B数列an的通项公式可能为C当数列an满足时,D当数列an满足P(k)k2ak(k1,2,2

5、021)时,(n+1)an(n1)an1(n2)122021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo设计师的灵感来源于曲线C:|x|n+|y|n1则下列说法正确的是()A曲线C关于原点成中心对称B当n2时,曲线C上的点到原点的距离的最小值为2C当n0时,曲线C所围成图形的面积的最小值为D当n0时,曲线C所围成图形的面积小于4三、填空题:本大题共4小题,每小题5分,共20分.13某校机器人兴趣小组有男生3名,女生2名,现从中随机选出3名参加一个机器人大赛,则选出的人员至少有一名女生的选法有 种14在(2x2)6的展开式中含x3的项系数为 15已知双曲线的左、右焦点分别为F

6、1,F2,点A在双曲线E的左支上,且F1AF2120,|AF2|3|AF1|,则双曲线E的离心率为 16若存在x0(1,2),满足lnax02a,则实数a的取值范围为 四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.17ABC的内角A,B,C的对边分别为a,b,c,(1)求B;(2)若b3,求ABC周长的最大值18已知首项为2的数列an中,前n项和Sn满足Sntn2+n(tR)(1)求实数t的值及数列an的通项公式an;(2)将bn,bn2+an,bn2an,三个条件任选一个补充在题中,求数列bn的前n项和T

7、n19如图,三棱柱ABCA1B1C1中,平面A1ACC1平面ABC,ABC和A1AC都是正三角形,D是AB的中点(1)求证:BC1平面A1DC;(2)求二面角A1DCC1的余弦值202020年10月,中共中央办公厅、国务院办公厅印发了关于全面加强和改进新时代学校体育工作的意见,某地积极开展中小学健康促进行动,决定在2021年体育中考中再增加一定的分数,规定:考生须参加游泳、长跑、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校在初三上学期开始要掌握全年级学生一分钟跳绳情况,随机抽取了100名学生进行测试,得到如图所示频率分布直方图,且规定计分规则如表:每分钟跳绳个数155,165)165,1

8、75)175,185)185,+)得分17181920(1)现从样本的100名学生中任意选取2人,求两人得分之和不大于35分的概率;(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,整体成绩差异略有变化假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,方差为169,且该校初三年级所有学生正式测试时每分钟的跳绳个数X服从正态分布N(,2),用样本数据的期望和方差估计总体的期望和方差(各组数据用区间的中点值代替)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望;判断该校初三年级所有学

9、生正式测试时的满分率是否能达到85%,说明理由附:随机变量服从正态分布N(,2),则P(X+)0.6826,P(2X+2)0.9544,P(3X+3)0.997421在平面直角坐标系xOy中,已知椭圆:的长轴长为4,且经过点A为左顶点,B为下顶点,椭圆上的点P在第一象限,PA交y轴于点C,PB交x轴于点D(1)求椭圆的标准方程;(2)若,求线段AP的长;(3)试问:四边形ABDC的面积是否为定值?若是,求出该定值;若不是,请说明理由22已知函数f(x)(1)判断f(x)的单调性,并比较20202021与20212020的大小;(2)若函数g(x)(x2)2+x(2f(x)1),其中,判断g(x

10、)的零点的个数,并说明理由参考数据:ln20.693参考答案一、选择题(共8小题,每小题5分,共40分). 1已知集合Ax|5x1,Bx|x24,则AB()A(2,3)B2,3)C2,1)D(2,1)【分析】可求出集合B,然后进行交集的运算即可解:Ax|5x1,Bx|2x2,AB2,1)故选:C2已知i为虚数单位,若复数z,则|z|()A1B2CD【分析】直接利用商的模等于模的商求解解:由z,得|z|故选:D3设m,n是两条不同的直线,是两个不同的平面,p:mn,若p是q的必要条件,则q可能是()Aq:m,n,Bq:m,n,Cq:m、n,Dq:m,n,【分析】由题意知,若p是q的必要条件,则只

11、需qp即可;分别判断四个选项中是否满足q能推出p,即可得出结论解:若p是q的必要条件,则只需qp即可;对于选项A,m、n的位置关系是平行或异面,q不能推出p,所以A错误;对于选项B,结论为mn,则q不能推出p,所以B错误;对于选项C,若n,则n;又m,所以mn,即qp,所以C正确;对于D,m、n的位置关系是平行或异面或相交,则q不能推出p,所以D错误故选:C4如图上半部分为一个油桃园每年油桃成熟时,园主都需要雇佣人工采摘,并沿两条路径将采摘好的油桃迅速地运送到水果集散地C处销售路径1:先集中到A处,再沿公路AC运送;路径2:先集中到B处,再沿公路BC运送园主在果园中画定了一条界线,使得从该界线

12、上的点出发,按这两种路径运送油桃至C处所走路程一样远已知AC3km,BC4km,若这条界线是曲线E的一部分,则曲线E为()A圆B椭圆C抛物线D双曲线【分析】利用已知条件,推出曲线E满足双曲线的定义,得到结果解:设曲线E上的点为P,由题意可知,|PA|+|AC|PB|+|BC|,可得|PA|PB|BC|AC|1,P的轨迹满足双曲线的定义,所以则曲线E为双曲线故选:D5设X为随机变量,且,若随机变量X的方差,则P(X2)()ABCD【分析】由XB(n,),求出n6,从而XB(6,),由此能求出P(X2)解:设X为随机变量,且XB(n,),随机变量X的方差,解得n6,XB(6,),P(X2)故选:D

13、6东莞市同沙生态公园水绕山环,峰峦叠嶂,是一个天生丽质,融山水生态与人文景观为一体的新型公园现有甲乙两位游客慕名来到同沙生态公园旅游,分别准备从映翠湖、十里河塘、计生雕塑园和鹭鸟天堂4个旅游景点中随机选择其中一个景点游玩记事件A:甲和乙至少一人选择映翠湖,事件B:甲和乙选择的景点不同,则条件概率P(B|A)()ABCD【分析】分别求出事件A,事件B对应的基本事件的个数,再结合条件概率公式,即可求解解:甲和乙至少一人选择映翠湖对应的基本事件有44337个,甲和乙选择的景点不同对应的基本事件有个,P(B|A)故选:C7已知函数yf(x)为R上的偶函数,且对于任意的满足f(x)cosx+f(x)si

14、nx0,则下列不等式成立的是()ABCD【分析】令g(x),依题意知g(x)为偶函数,且在区间上是减函数,再由g(0)g()g()g()g()g(),结合条件分别判断四个选项即可解:偶函数yf(x)对于任意的x0,)满足f(x)cosx+f(x)sinx0,令g(x),则g(x)g(x),即g(x)为偶函数又g(x)0,故g(x)在区间上是减函数,所以g(0)g()g()g()g()g(),即f(0)f()f(),故B正确;,故A错误;,故C错误;,故D错误;故选:B8“帷幄”是古代打仗必备的帐篷,又称“惺帐”如图是的一种幄帐示意图,帐顶采用“五脊四坡式”,四条斜脊的长度相等,一条正脊平行于底

15、面若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为5:3,则正脊与斜脊长度的比值为()ABCD1【分析】寻找二面角的平面角,列方程确定正脊与斜脊长度的比值解:设正脊长为a,斜脊长为b,底面矩形的长与宽分别为5t和3t,如图过S作SO上底平面于O,过O作OEAE于E,作OFAF于F,连接SE、SF,由题意知tanSEOtanSFO,SE2b2()2,SF2b2()2,所以,于是a2t,b,所以,故选:B二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9将曲线C1:ysinx上各点

16、的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2:yf(x),则下列结论正确的是()AB为一条对称轴Cf(x)在0,2上有4个零点Df(x)在上单调递增【分析】由题意利用函数yAsin(x+)的图象变换规律,得到f(x)的解析式,再利用正弦函数的图象和性质,得出结论解:将曲线C1:ysinx上各点的横坐标缩短到原来的倍,纵坐标不变,可得ysin2x 的图象,再把得到的曲线向左平移个单位长度,得到曲线C2:yf(x)sin(2x+),故A错误;令x,求得f(x)1,为最小值,故x是f(x)的图象的一条对称轴,故B正确;在0,2上,2x+,f(x)又4个零点,故C

17、正确;在上,2x+(,),函数f(x)没有单调性,故D错误,故选:BC10如图,在棱长为a的正方体ABCDA1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中是定值的是()A点P到平面QEF的距离B直线PQ与平面PEF所成的角C三棱锥PQEF的体积DQEF的面积【分析】由平面QEF也就是平面A1B1CD,可判断A;由线面角的定义可判断B;由棱锥的体积公式可判断C;由三角形的面积公式可判断D解:对于A,平面QEF也就是平面A1B1CD,既然P和平面QEF都是固定的,P到平面A1B1CD的距离是定值,点P到平面QEF的距离为定值,故A

18、正确;对于B,Q是动点,E,F也是动点,推不出定值的结论,直线PQ与平面PEF所成的角不是定值,故B错误;对于C,EF定长,Q到EF的距离就是Q到CD的距离也为定长,即底和高都是定值,QEF的面积是定值,点P到平面QEF的距离,P到平面QEF的距离也是定值,三棱锥的高也是定值,三棱锥PQEF的体积是定值,故C正确;对于D,EF定长,Q到EF的距离就是Q到CD的距离也为定长,即底和高都是定值,QEF的面积是定值,故D正确故选:ACD11设随机变量的分布列如表:12320202021Pa1a2a3a2020a2021则下列说法正确的是()A当an为等差数列时,B数列an的通项公式可能为C当数列an

19、满足时,D当数列an满足P(k)k2ak(k1,2,2021)时,(n+1)an(n1)an1(n2)【分析】由等差数列的求和公式判断选项A;由裂项相消法结合概率之和等于1判断选项B;根据等比数列的求和公式结合概率之和等于1,即可判断选项C;利用前n项和与通项的关系,即可判断选项D解:对于A,因为an为等差数列,所以S20211,则有a2+a2020a1+a2021,故A正确;对于B,若数列an的通项公式为(),则S2021(1+)(1)1,故B正确;对于C,因为an,所以S2021+a20211+a20211,则有a2021,故C错误;对于D,令SkP(k)k2ak,则ak+1Sk+1Sk(

20、k+1)2ak+1k2ak,故,所以(n2),即(n+1)an(n1)an1(n2),故D正确故选:ABD122021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo设计师的灵感来源于曲线C:|x|n+|y|n1则下列说法正确的是()A曲线C关于原点成中心对称B当n2时,曲线C上的点到原点的距离的最小值为2C当n0时,曲线C所围成图形的面积的最小值为D当n0时,曲线C所围成图形的面积小于4【分析】以x替换x,以y替换y,方程不变判断A;利用基本不等式求最值判断B;举例说明C错误;求得曲线在第一象限围成图形的面积的范围,结合由对称性判断D解:对于A,在曲线C:|x|n+|y|n1

21、中,以x替换x,以y替换y,方程不变,则曲线C关于原点成中心对称,故A正确;对于B,当n2时,C:|x|n+|y|n1化为,由,当且仅当x4y4时等号成立,得,即曲线C上的点到原点的距离的最小值为2,故B正确;对于C,取n1,曲线C:|x|+|y|1,曲线C所围成图形的面积S,故C错误;对于D,当n0时,取曲线C在第一象限的面积为S1,则S4S1,又在第一象限的曲线为xn+yn1,S1111,则S4,故D正确故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.13某校机器人兴趣小组有男生3名,女生2名,现从中随机选出3名参加一个机器人大赛,则选出的人员至少有一名女生的选法有 9种【分

22、析】分别按1名女生和2名男生,2名女生和1名男生两种情况讨论,并求和,即可求解解:由题意可得,选出的人员至少有一名女生的选法共 种故答案为:914在(2x2)6的展开式中含x3的项系数为 160【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得展开式中含x3的项系数解:(2x2)6的展开式的通项公式为 Tr+1(1)r26rx123r,令123r3,求得r3,可得展开式中含x3的项系数为23160,故答案为:16015已知双曲线的左、右焦点分别为F1,F2,点A在双曲线E的左支上,且F1AF2120,|AF2|3|AF1|,则双曲线E的离心率为 【分析】利用双曲线的定义

23、,结合余弦定理,转化求解双曲线的离心率即可解:双曲线E的左、右焦点分别为F1、F2,点A在双曲线E的左支上,且F1AF2120,|AF2|3|AF1|,由双曲线的定义可知,|AF2|3|AF1|3a,所以4c29a2+a22a3acos120,即4c213a2,解得e,故答案为:16若存在x0(1,2),满足lnax02a,则实数a的取值范围为 ()【分析】构造函数,g(x)ax2aa(x2),根据函数的图象,将问题转化为求解f(x)在x2处切线的斜率,利用导数的几何意义求解即可解:设,则f(2)0,故函数f(x)过定点(2,0)令g(x)ax2aa(x2),故函数g(x)过定点(2,0),函

24、数f(x)在(1,2)上单调递增,值域为(,0),若g(x)a(x2)为f(x)在x2处的切线,则,则切线的斜率af(2),因为存在x0(1,2),满足lnax02a,所以g(x)的斜率必须大于f(x)在x2处切线的斜率,故a故答案为:四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.17ABC的内角A,B,C的对边分别为a,b,c,(1)求B;(2)若b3,求ABC周长的最大值【分析】(1)根据正弦定理可得出,然后代入sinCsinAcosB+sinBcosA即可得出,从而得出B;(2)根据余弦定理可得出,进

25、而得出b2a2+c2ac,然后根据基本不等式即可求出a+c的最大值,进而得出ABC周长的最大值解:(1),0B,;(2),b2a2+c2ac,9(a+c)23ac,当且仅当ac3时,a+c取得最大值6,此时周长最大值为918已知首项为2的数列an中,前n项和Sn满足Sntn2+n(tR)(1)求实数t的值及数列an的通项公式an;(2)将bn,bn2+an,bn2an,三个条件任选一个补充在题中,求数列bn的前n项和Tn【分析】(1)Sntn2+n,令n1,即可求得t的值,由anSnSn1,即可求得数列an的通项公式;(2)选,利用裂项求和法即可得解选,利用分组求和法即可得解选,利用错位相减法

26、求和即可得解解:(1)由题可知a12,因为Sntn2+n,令n1,可得a1S1t+12,解得t1,所以Snn2+n,Sn1(n1)2+(n1),所以anSnSn1n2+n(n1)2(n1)2n,当n1时,a12也适合上式,所以数列an的通项公式an2n(2)若选bn(),所以Tn(1+)(1)若选bn2+an4n+2n,所以Tn+n2+n+n2+n若选bn2an2n4n,所以Tn241+442+643+2n4n,4Tn242+443+644+2n4n+1,两式相减可得3Tn241+242+243+24n2n4n+122n4n+1(2n)4n+1,所以Tn(n)4n+1+19如图,三棱柱ABCA

27、1B1C1中,平面A1ACC1平面ABC,ABC和A1AC都是正三角形,D是AB的中点(1)求证:BC1平面A1DC;(2)求二面角A1DCC1的余弦值【分析】(1)连接AC1,交A1C于点E,连接DE,利用中位线定理证明DE/BC1,由线面平行的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面A1DC和平面DCC1的法向量,由向量的夹角公式求解即可【解答】(1)证明:如图,连接AC1,交A1C于点E,连接DE,由于四边形A1ACC1是平行四边形,所以E是AC1的中点,又因为D是AB的中点,所以DE/BC1,因为DE平面A1DC,BC1

28、平面A1DC,所以BC1/平面A1DC;(2)解:如图,取AC的中点O,连接A1O,BO,根据ABC和A1AC都是正三角形,得A1OAC,BOAC,又平面A1ACC1平面ABC,平面A1ACC1平面ABCAC,所以A1O平面ABC,于是A1OBO,以O为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系如图所示,设AC2,则,C(0,1,0),所以,设平面A1DC的法向量为,则,即,令x3,则,z1,所以,设平面DCC1的法向量,则,即,令a3,则,c1,所以,设二面角A1DCC1的大小为,由图易知为锐角,则,因此二面角A1DCC1的余弦值为202020年10月,中共中央办

29、公厅、国务院办公厅印发了关于全面加强和改进新时代学校体育工作的意见,某地积极开展中小学健康促进行动,决定在2021年体育中考中再增加一定的分数,规定:考生须参加游泳、长跑、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校在初三上学期开始要掌握全年级学生一分钟跳绳情况,随机抽取了100名学生进行测试,得到如图所示频率分布直方图,且规定计分规则如表:每分钟跳绳个数155,165)165,175)175,185)185,+)得分17181920(1)现从样本的100名学生中任意选取2人,求两人得分之和不大于35分的概率;(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个

30、数都有明显进步,整体成绩差异略有变化假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,方差为169,且该校初三年级所有学生正式测试时每分钟的跳绳个数X服从正态分布N(,2),用样本数据的期望和方差估计总体的期望和方差(各组数据用区间的中点值代替)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望;判断该校初三年级所有学生正式测试时的满分率是否能达到85%,说明理由附:随机变量服从正态分布N(,2),则P(X+)0.6826,P(2X+2)0.9544,P(3X+3)0.9974【分析】(1)利用分类计数原理以及古典概型的概率

31、公式求解即可;(2)由题意得到XN(195,132),求出全年级所有学生中任取1人,每分钟跳绳个数在195个以上的概率,然后利用二项分布的概率公式,列出分布列,求出数学期望即可;利用XN(195,132),计算P(X182),然后比较分析即可解:(1)设“选取的两人得分之和不大于35分”为事件A,则事件A的基本事件总数为,由题意可得,得17分的学生人数为1000.066人,得18分的人数为1000.1212人,事件A发生包含两种可能:一种是两人得分均为17分,另一种是两人中有一人得17分,1人得18分,所以事件A的基本事件个数为,所以;(2)由题意可得,正式测试时,则XN(195,132),所

32、以P(X195)P(X)0.5,则在全年级所有学生中任取1人,每分钟跳绳个数在195个以上的概率为0.5,由题意可知,B(3,),则P(k),(k0,1,2,3),故的分布列为: 0 1 23 P 所以的数学期望为E()3;由XN(195,132),则P(X182)P(X)P(X+)0.8413,所以预测正式测试时每分钟跳绳个数在182个以上的人数比例为0.84130.85,由题意,每分钟跳绳个数不少于185个才能得到满分,所以可以预测该校初三年级所有学生正式测试时的满分率p0.84130.85,故该校初三年级所有学生正式测试时的满分率不能达到85%21在平面直角坐标系xOy中,已知椭圆:的长

33、轴长为4,且经过点A为左顶点,B为下顶点,椭圆上的点P在第一象限,PA交y轴于点C,PB交x轴于点D(1)求椭圆的标准方程;(2)若,求线段AP的长;(3)试问:四边形ABDC的面积是否为定值?若是,求出该定值;若不是,请说明理由【分析】(1)利用已知建立等式关系由此即可求解;(2)由已知向量关系求出点C的坐标,然后求出直线AP的方程,并与椭圆方程联立求出点P的坐标,由此即可求解;(3)设出直线PB的方程,由此求出点D的坐标,联立直线PB与椭圆的方程,求出点P的坐标,由此求出直线PA的方程,进而求出点C的坐标,然后求出|AD|,|BC|,由此求出四边形ABCD的面积,进而可以求解解:(1)由题

34、意得2a4,解得a2,把点Q的坐标代入椭圆C的方程,得,由于a2,解得,所以所求的椭圆的标准方程为;(2)因为,则得,即,又因为A(2,0),所以直线AP的方程为,由解得,所以,即线段AP的长为;(3)由题意知,直线PB的斜率存在,可设直线PB:,令y0,得,由得,解得x0(舍去)或,所以,于是直线AP的方程为,令x0得,即,所以四边形ABDC的面积等于,即四边形ABDC的面积为定值22已知函数f(x)(1)判断f(x)的单调性,并比较20202021与20212020的大小;(2)若函数g(x)(x2)2+x(2f(x)1),其中,判断g(x)的零点的个数,并说明理由参考数据:ln20.69

35、3【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,判断函数的零点个数即可解:(1)函数f(x)f(x)的定义域是(0,+),故f(x),令f(x)0,解得:0xe,令f(x)0,解得:xe,故f(x)在(0,e)单调递增,在(e,+)单调递减,则f(2020)f(2021),即,故2021ln20202020ln2021,故ln20202021ln20212020,故2020202120212020;(2),(),g(x)ax+2a1,令g(x)0,解得:x2或x,a时,则g(x)0,g(x)在(0,+)单调递增,且g(2)2ln220,g(6)2ln620,故g(2)g(6)0,故存在x0(2,6),使得g(x0)0,故g(x)在(0,+)上只有1个零点;时,则2,则g(x)在(0,)递增,在(,2)递减,在(2,+)递增,且g(2)2ln220,g(6)8a+2ln662ln620,故g(2)g(6)0,故存在x1(2,6),使得g(x1)0,故g(x)在(2,+)上只有1个零点,另一方面h(a),(),2(1)20,h(a)在(,)上单调递增,所以22ln0则g()0,故g(x)在(0,上没有零点,综上:当时,g(x)只有1个零点

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3