收藏 分享(赏)

《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc

上传人:高**** 文档编号:206284 上传时间:2024-05-26 格式:DOC 页数:11 大小:524.50KB
下载 相关 举报
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第1页
第1页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第2页
第2页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第3页
第3页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第4页
第4页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第5页
第5页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第6页
第6页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第7页
第7页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第8页
第8页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第9页
第9页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第10页
第10页 / 共11页
《发布》广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题 (13) WORD版含答案.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考数学三轮复习冲刺模拟试题13解析几何02三、解答题已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.()求椭圆的标准方程;()与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.OxyMN椭圆E:+=1(ab0)离心率为,且过P(,).(1)求椭圆E的方程;(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A,B两点,与y轴交与D点,若=,=,且+=,求抛物线C的标准方程.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.()求曲线C的方程;()是否存在正数m,对于过点M(m,

2、0)且与曲线C有两个交点A,B的任一直线,都有0?若存在,求出m的取值范围;若不存在,请说明理由.设点P是曲线C:上的动点,点P到点(0,1)的距离和它到焦点F的距离之和的最小值为(1)求曲线C的方程(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值,若不存在,说明理由.已知椭圆的离心率为,直线过点,且与椭圆相切于点.()求椭圆的方程;()是否存在过点的直线与椭圆相交于不同的两点、,使得?若存在,试求出直线的方程;若不存在,请说明理由.设椭圆的左、右焦点分别为,上顶点

3、为,在轴负半轴上有一点,满足,且.()求椭圆的离心率;()是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程; ()在()的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点(1)求双曲线的方程;(2)是否为定值,若为定值,求出该值;若不为定值,说明理由.(本小题满分13分)如图F1、F2为椭圆的左、右焦点,D、E是椭圆的两个顶点,椭圆的离心率,.若点在椭圆C上,则点称为点M的一个“椭点”,直线l与椭圆交于A

4、、B两点,A、B两点的“椭点”分别为P、Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点F1的直线l,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.参考答案三、解答题解:() 设椭圆的标准方程为 由已知得: 解得 所以椭圆的标准方程为: () 因为直线:与圆相切 所以, 把代入并整理得: 7分 设,则有 因为, 所以, 又因为点在椭圆上, 所以, 因为 所以 所以 ,所以 的取值范围为 【解析】 解. (1) 点P(,)在椭圆上 (2)设的方程为直线与抛物线C切点为 , 解得, 代入椭圆方程并整理得: 则方程(1)的两个根, 由, , ,解得 本题主要

5、考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力. 解:(I)设P是直线C上任意一点,那么点P()满足: 化简得 (II)设过点M(m,0)的直线与曲线C的交点为A(),B() 设的方程为,由得,. 于是 又 又,于是不等式等价于 由式,不等式等价于 对任意实数t,的最小值为0,所以不等式对于一切t成立等价于 ,即 由此可知,存在正数m,对于过点M(,0)且与曲线C有A,B两个交点的任一直线,都有,且m的取值范围是 解:(1)依题意知,解得,所以曲线C的方程为 (2)由题意设直线PQ的方程为:,则点 由,得, 所以直线QN的方程为 由, 得 所以直线MN的斜率为 过点

6、N的切线的斜率为 所以,解得 故存在实数k=使命题成立. ()由题得过两点,直线的方程为.因为,所以,. 设椭圆方程为,2分由消去得,.又因为直线与椭圆相切,所以4分6分8分又直线与椭圆相切,由解得,所以10分则. 所以.又 所以,解得.经检验成立.所以直线的方程为.14分 【解】()连接,因为,所以, 即,故椭圆的离心率 (其他方法参考给分) ()由(1)知得于是, , 的外接圆圆心为),半径 到直线的最大距离等于,所以圆心到直线的距离为, 所以,解得 所求椭圆方程为. ()由()知, : 代入消得 因为过点,所以恒成立 设,则, 中点 当时,为长轴,中点为原点,则 当时中垂线方程. 令, , 可得 综上可知实数的取值范围是 (1) (2) 因为三点共线 ,同理 解:(1)由题意得,故,故,即a=2,所以b=1,c=,故椭圆C的标准方程为.(2)当直线l的斜率不存在时,直线l的方程为联立解得或,不妨令,所以对应的“椭点”坐标.而.所以此时以PQ为直径的圆不过坐标原点.当直线l的斜率存在时,设直线l的方程为联立,消去y得:设,则这两点的“椭点”坐标分别为,由根与系数的关系可得:,若使得以PQ为直径的圆经过坐标原点,则OPOQ,而,因此,即即=0,解得所以直线方程为或

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3