1、A组(时间:45分钟满分:60分)一、选择题(每小题5分,共25分)1(2011舟山模拟)已知an为等差数列,a2a8,则S9等于()A4 B5 C6 D7解析an为等差数列,a2a8a1a9,S96.答案C2设等差数列an的前n项和为Sn,若2a86a11,则S9()A54 B45 C36 D27解析由等差中项性质可得2a8a5a116a11.a56,S99a554.答案A3(2011佛山市模拟)在等比数列an中,an0,若a1a516,a48,则a5()A16 B8 C4 D32解析a1a5a2a416,a22,q24,q2,a5a2q322316.答案A4(2010福建)设等差数列an的
2、前n项和为Sn,若a111,a4a66,则当Sn取最小值时,n等于()A6 B7 C8 D9解析设等差数列的公差为d,则由a4a66得2a56,a53.又a111,3114d,d2,Sn11n2n212n(n6)236,故当n6时,Sn取最小值,故选A.答案A5已知an为等差数列,bn为正项等比数列,公式q1,若a1b1,a11b11,则()Aa6b6 Ba6b6Ca6b6或a622b6,a6b6.答案B二、填空题(每小题5分,共15分)6等差数列an的公差不为零,首项a11,a2是a1和a5的等比中项,则数列an的公差d_.解析由题意得(1d)21(14d),d0,解得d2.答案27在等比数
3、列an中,a3a636,a4a718,an,则n_.解析q,a3a6a12a1536,a127128,ana1 qn127n1,n18,n18,n9.答案98已知数列an的通项an与前n项和Sn之间满足关系Sn23an,则an_.解析当n2时,Sn123an1,;又Sn23an,;由得an3an3an1,即anan1.又当n1时,a1S123a1,a1,an是首项为,公比为的等比数列,ann1.答案n1三、解答题(每小题10分,共20分)9已知Sn为数列an的前n项和,且2anSnn.(1)若bnan1,证明:数列bn是等比数列;(2)求数列Sn的前n项和Tn.(1)证明n1时,2a1S11,
4、a11.由题意,得2anSnn,2an1Sn1(n1),两式相减可得2an12anan11,即an12an1.于是an112(an1),即bn12bn,又b1a112.所以数列bn是首项为2,公比为2的等比数列(2)解由(1)知:bn22n12n,an2n1,Sn2ann2n1n2,TnT1T2Tn(22232n1)(12n)2n2n2n24n2.10设an是公比大于1的等比数列,Sn为数列an的前n项和已知S37,且a13,3a2,a34构成等差数列(1)求数列an的通项公式;(2)令bnln a3n1,n1,2,求数列bn的前n项和Tn.解(1)设数列an的公比为q(q1),由已知,得即亦
5、即解得:a11,q2,an2n1.(2)由(1)得:a3n123n,bnln a3n1ln 23n3nln 2,又bn1bn3ln 2,bn是以b13ln 2为首项,公差为3ln 2的等差数列Tnb1b2bn,即Tnln 2.B组(时间:30分钟满分:35分)一、选择题(每小题5分,共15分)1在公差不为0的等差数列an中,2a3a2a110,数列bn为等比数列,且b7a7,则b6b8等于()A2 B4 C8 D16解析2a3a2a110,2(a3a11)a,4a7a,a74,b74,b6b8b16.答案D2在正项等比数列an中,a2,a48是方程2x27x60的两个根,则a1a2a25a48
6、a49的值为()A. B9 C9 D35解析依题意知:a2,a482或a22,a48.a2a48a3.a1a2a25a48a49a9.答案B3(2011哈尔滨模拟)已知正项等比数列an满足a7a62a5,若存在两项am,an使得4a1,则的最小值为()A. B. C. D.解析由a7a62a5.得q2q20,解得q2.amana1qm1a1qn116a,qmn22mn224,mn24,mn6,(mn)(64).答案B二、填空题(每小题5分,共10分)4设Sn表示等差数列an的前n项的和,且S918,Sn240,若an430(n9),则n_.解析由S918,得a52,Sn240,n15.答案15
7、5在数列an中,Sn是其前n项和,若a11,an1Sn(n1),则an_.解析an1Sn(n1),anSn1(n2),an1anan(n2),即an1an(n2),当n2时,ann2,当n1时,a11.an答案三、解答题(本题10分)6(2011杭州教学质量检测)已知正项数列an,bn满足:对任意正整数n,都有an,bn,an1成等差数列,bn,an1,bn1成等比数列,且a110,a215.(1)求证:数列n是等差数列;(2)求数列an,bn的通项公式;(3)设Sn,如果对任意正整数n,不等式2aSn2恒成立,求实数a的取值范围(1)证明由已知,得2bnanan1abnbn1由得an1将代入得,对任意n2,nN*,有2bn.即2.是等差数列(2)解设数列的公差为d,由a110,a215.经计算,得b1,b218.,d3.(n1)(n4)bn,an.(3)解由(1)得2.Sn22.不等式2aSn2化为4a2.即(a1)n2(3a6)n80,设f(n)(a1)n2(3a6)n8,则f(n)0,即a1时,不满足条件;当a10,即a1时,满足条件;当a10,即a1时,f(n)的对称轴为x0,f(n)关于n递减,因此,只需f(1)4a150.解得a,a1.综上,a1.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u