收藏 分享(赏)

《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc

上传人:高**** 文档编号:190996 上传时间:2024-05-26 格式:DOC 页数:10 大小:290.50KB
下载 相关 举报
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第1页
第1页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第2页
第2页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第3页
第3页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第4页
第4页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第5页
第5页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第6页
第6页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第7页
第7页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第8页
第8页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第9页
第9页 / 共10页
《优品》高中数学人教版必修1 2-2-1对数与对数运算 教案(系列四) WORD版.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.2 对数函数2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考

2、”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;

3、让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用.课时安排3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a亿元,如果每

4、年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.()4?()x0.125x=?2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数引出对数的概念,教师板书课题:对数与对数运算(1).思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数引出对数的概念,教师板书课题:对数与对数运算(1).推进新课新知探究提出问题(对于课本P572.1.2的例8)利用计算机作出函数y=131.0

5、1x的图象.从图象上看,哪一年的人口数要达到18亿、20亿、30亿?如果不利用图象该如何解决,说出你的见解?即=1.01x,=1.01x,=1.01x,在这几个式子中,x分别等于多少?你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题,回忆计算机作函数图象的方法,抓住关键点.对问题,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题,定义一种新的运算.对问题,借助,类比到一般的情形.讨论结果:如图2-2-1-1.图2-2-1-1在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横

6、坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.=1.01x,=1.01x,=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若=1.01x,则x称作以1.01为底的的对数.其他的可类似得到,这种运算叫做对数运算.一般性的结论就是对数的定义:一般地,如果a(a0,a1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.有了对数的定义,前面问题的x就

7、可表示了:x=log1.01,x=log1.01,x=log1.01.由此得到对数和指数幂之间的关系:aNb指数式ab=N底数幂指数对数式logaN=b对数的底数真数对数例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01提出问题为什么在对数定义中规定a0,a1?根据对数定义求loga1和logaa(a0,a1)的值.负数与零有没有对数?=N与logaab=b(a0,a1)是否成立?讨论结果:这是因为若a0,则N为某些值时,b不存在,如log(2);若a=0,N不为0时,b不存在,如log03,N为0时,b可为任意

8、正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,b不存在,如log12,N为1时,b可为任意数,是不唯一的,即log11有无数个值.综之,就规定了a0且a1.loga1=0,logaa=1.因为对任意a0且a1,都有a0=1,所以loga1=0.同样易知:logaa=1.即1的对数等于0,底的对数等于1.因为底数a0且a1,由指数函数的性质可知,对任意的bR,ab0恒成立,即只有正数才有对数,零和负数没有对数.因为ab=N,所以b=logaN,ab=a=N,即a=N.因为ab=ab,所以logaab=b.故两个式子都成立.(a=N叫对数恒等式) 思考我们对对数的概念和一些特殊的

9、式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本P68的内容,教师引导,板书.解答:常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数log10N简记作lgN.例如:log105简记作lg5;log103.5简记作lg3.5.自然对数:在科学技术中常常使用以无理数e=2.718 28为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数logeN简记作lnN.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路1例1将下列指数式写成对数式,对数式写成指数式:(1)54=625;

10、(2)2-6=;(3)()m=5.73;(4)log16=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数.对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底的对数.对(3)根据指数式与对数式的关系,m在指数位置上,m是以为底5.73的对数.对(4)根据指数式与对数式的关系,16在真数位置上,16是的-4次幂.对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂.对(6)根据指

11、数式与对数式的关系,10在真数位置上,10是e的2.303次幂.解:(1)log5625=4;(2)log2=-6;(3)log5.73=m;(4)()-4=16;(5)10-2=0.01;(6)e2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N与b在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据.变式训练课本P6

12、4练习 1、2.例2求下列各式中x的值:(1)log64x=;(2)logx8=6;(3)lg100=x;(4)-lne2=x.活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log64x=-,所以x=64=(2)=2-4=.(2)因为logx8=6,所以x6=8=23=()6.因为x0,因此x=.(3)因为lg100=x,所以10x=100=102.因此x=2.(4)因为-lne2=x,所以lne2=-x,e-x=e2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解.变式训练求下列各式中的

13、x:log4x=;logx27=;log5(log10x)=1.解:由log4x=,得x=4=2;由logx27=,得x=27,所以x=27=81;由log5(log10x)=1,得log10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( )(1)若log5x=3,则x=15 (2)若log25x=,则x=5 (3)若logx=0,则x= (4)若log5x=3,则x=A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4)活

14、动:学生观察,教师引导学生考虑对数的定义.对数式化为指数式,根据指数幂的运算性质算出结果.对于(1)因为log5x=3,所以x=53=125,错误;对于(2)因为log25x=,所以x=25=5,正确;对于(3)因为logx=0,所以x0=,无解,错误;对于(4)因为log5x=3,所以x=5-3=,正确.总之(2)(4)正确.答案:C点评:对数的定义是对数形式和指数形式互化的依据.例2对于a0,a1,下列结论正确的是( )(1)若M=N,则logaM=logaN (2)若logaM=logaN,则M=N (3)若logaM2=logaN2,则M=N (4)若M=N,则logaM2=logaN

15、2A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4)活动:学生思考,讨论,交流,回答,教师及时评价.回想对数的有关规定.对(1)若M=N,当M为0或负数时logaMlogaN,因此错误;对(2)根据对数的定义,若logaM=logaN,则M=N,正确;对(3)若logaM2=logaN2,则M=N,因此错误;对(4)若M=N=0时,则logaM2与logaN2都不存在,因此错误.综上,(2)正确.答案:C点评:0和负数没有对数,一个正数的平方根有两个.例3计算:(1)log927;(2)log81;(3)log(2-3);(4)log625.活动:教师引导,学生回忆,教师提

16、问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log927,则9x=27,32x=33,所以x=;(2)设x=log81,则()x=81,3=34,所以x=16;(3)令x=log(2-)=log(2+)-1,所以(2+)x=(2+)-1,x=-1;(4)令x=log625,所以()x=625,5x=54,x=3.解法二:(1)log927=log933=log99=;(2)log81=log()16=16;(3)log

17、(2-)=log(2+)-1=-1;(4)log625=log()3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据.变式训练课本P64练习 3、4.知能训练1.把下列各题的指数式写成对数式:(1)4216;(2)30=1;(3)4x2;(4)2x0.5;(5)54=625;(6)3-2=;(7)()-2=16.解:(1)2log416;(2)0log31;(3)log4;(4)log20.5;(5)4=log5625;(6)-2=log3;(7)-2=log16.2.把下列各题的对数式写成指数式:(1)log527;(2)log87;(

18、3)log43;(4)log7;(5)log216=4;(6)log27=-3;(7)log=6;(8)logx64=-6;(9)log2128=7;(10)log327=a.解:(1)5x27;(2)8x;(3)4x3;(4)7x;(5)24=16;(6)()-3=27;(7)()6=x;(8)x-6=64;(9)27=128;(10)3a=27.3.求下列各式中x的值:(1)log8x=;(2)logx27=;(3)log2(log5x)=1;(4)log3(lgx)=0.解:(1)因为log8x=,所以x=8=(23)=2-2=;(2)因为logx27=,所以x=27=33,即x=(33

19、)=34=81;(3)因为log2(log5x)=1,所以log5x=2,x=52=25;(4)因为log3(lgx)=0,所以lgx=1,即x=101=10.4.(1)求log84的值;(2)已知loga2=m,loga3=n,求a2m+n的值.解:(1)设log84=x,根据对数的定义有8x=4,即23x=22,所以x=,即log84=;(2)因为loga2=m,loga3=n,根据对数的定义有am=2,an=3,所以a2m+n=(am)2an=(2)23=43=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升请你阅读课本75页的有关阅读部分的内容,

20、搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数.作业课本P74习题2.2A组 1、2.【补充作业】1.将下列指数式与对数式互化,有x的求出x的值.(1)5=;(2)log24=x;(3)3x=;(4)()x=64;(5)lg0.000 1=x;(6)lne5=x.解:(1)5=化为对数式是log5=;(2)x=log4化为指数式是()x=4,即2=22,=2,x=4;(3)3x=化为对数式是x=

21、log3,因为3x=()3=3-3,所以x=-3;(4)()x=64化为对数式是x=log64,因为()x=64=43,所以x=-3;(5)lg0.0001=x化为指数式是10x=0.0001,因为10x=0.000 1=10-4,所以x=-4;(6)lne5=x化为指数式是ex=e5,因为ex=e5,所以x=5.2.计算的值.解:设x=log3,则3x=,(3)x=(),所以x=log.所以3=.3.计算(a0,b0,c0,N0).解:=N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3