收藏 分享(赏)

《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc

上传人:高**** 文档编号:103181 上传时间:2024-05-25 格式:DOC 页数:13 大小:712KB
下载 相关 举报
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第1页
第1页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第2页
第2页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第3页
第3页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第4页
第4页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第5页
第5页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第6页
第6页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第7页
第7页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第8页
第8页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第9页
第9页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第10页
第10页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第11页
第11页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第12页
第12页 / 共13页
《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分检测 基础送分题题型专题(五) 空间几何体的三视图、表面积与体积 教师用书 WORD版含答案.doc_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家题型专题(五)空间几何体的三视图、表面积与体积1一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样即“长对正、高平齐、宽相等”2由三视图还原几何体的步骤一般先从俯视图确定底面,再利用正(主)视图与侧(左)视图确定几何体题组练透1已知长方体的底面是边长为1的正方形,高为,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于()A1 B. C2 D2解析:选C依题意得,题中的长方体的侧视图的高等于,正视图的长

2、是,因此相应的正视图的面积等于2.2(2016天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()解析:选B由几何体的正视图和俯视图可知该几何体为图,故其侧(左)视图为图.3(2016兰州模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于()A. B. C5 D2解析:选C由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC平面ABC,ACAB,所以最长的棱长为SB5.技法融会1由三视图还原到直观图的三步骤(1)根据俯视图确定几何体的底面(2)根据正(主)

3、视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置(3)确定几何体的直观图形状2(易错提醒)在读图或者画空间几何体的三视图时,应注意三视图中的实虚线.空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式S柱侧ch(c为底面周长,h为高);S锥侧ch(c为底面周长,h为斜高);S台侧(cc)h(c,c分别为上下底面的周长,h为斜高)(2)柱体、锥体、台体的体积公式V柱体Sh(S为底面面积,h为高);V锥体Sh(S为底面面积,h为高);V台体(SS)h(S,S分别为上下底面的面积,h为高不要求记忆)(3)球的表面积和体积公式S球4R2(R为球的半径);V球R3

4、(R为球的半径)题组练透1(2016全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径若该几何体的体积是,则它的表面积是()A17 B18C20 D28解析:选A由几何体的三视图可知,该几何体是一个球体去掉上半球的,得到的几何体如图设球的半径为R,则R3R3,解得R2.因此它的表面积为4R2R217.故选A.2(2016兰州模拟)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为()A. B. C3 D3解析:选A由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为,故体积为.3(2

5、016广州模拟)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A20 B. C5 D.解析:选D由题意知六棱柱的底面正六边形的外接圆半径r1,其高h1,球半径为R,该球的体积VR3 .4(2016重庆模拟)若正三棱锥ABCD中,ABAC,且BC1,则三棱锥ABCD的高为()A. B. C. D.解析:选A设三棱锥ABCD的高为h.依题意得AB,AC,AD两两垂直,且ABACADBC,BCD的面积为12.由VABCDVBACD得SBCDhSACDAB,即h,解得h,即三棱锥ABCD的高h.选A.5(2016北京高考)某四棱柱的三视图如图所示

6、,则该四棱柱的体积为_解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V1.答案:技法融会1求解几何体的表面积及体积的2大技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解2(易错提醒)对于简单组合体表面积与体积的计算,由于不能准确分析组合体的结构,以致得出错误结论.与球有关的组合体问题,一种是内切,一种是外接解题时要认真

7、分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图题组练透1(2016全国丙卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V的最大值是()A4 B. C6 D.解析:选B设球的半径为R,ABC的内切圆半径为2,R2.又2R3,R,Vmax.故选B.2(2016石家庄一模)在三棱锥PABC中,PABC4,PBAC5,PCAB,则三棱锥PABC的外接球的表面积为_解析:将三棱锥PABC放到长方体中,如图,设长方体的长、宽、高分别是a,b,c,则,相加解得a2b2c226,因为三棱锥PABC的外接球即该长方体的外接球,所以

8、外接球的直径2R,则三棱锥外接球的表面积为4R226.答案:26技法融会处理球与多面体切接问题的思路(1)过球及多面体中的特殊点(一般为接、切点)或线作面,化空间问题为平面问题;(2)利用平面几何知识寻找几何体中元素间的关系,确定球心位置;(3)建立几何量间关系,求半径r.立体几何与函数最值的交汇近几年,高考对立体几何的考查,正逐步由简单的计算问题向与最值问题交汇命题转变,强化了函数思想在立体几何中的应用,加大了题目的难度新题速递1(2016河南六市联考)一矩形的一边在x轴上,另两个顶点在函数y(x0)的图象上,如图,则此矩形绕x轴旋转而成的几何体的体积的最大值是()A B. C. D.解析:

9、选Ay(x0),yx22xy0,将其视为关于x的一元二次方程,设x1,x2是其两根,绕x轴旋转而成的几何体的体积Vy2|x1x2|y22,当且仅当y2,即y时等号成立,故选A.2已知正六棱柱的12个顶点都在一个半径为3的球面上,当正棱柱的体积取最大值时,其高的值为()A3 B. C2 D2解析:选D设正六棱柱的底面边长为a,高为h,则可得a29,即a29,那么正六棱柱的体积Vhh,令y9h,则y9,令y0,解得h2,易知当h2时,y取最大值,即正六棱柱的体积最大技法融会解答此类问题的一般思路是把所求空间几何体的面积和体积表示为关于线段长x或某一角的函数,有时还要利用导数求取最值一、选择题1如图

10、所示是一个物体的三视图,则此三视图所描述物体的直观图是()解析:选D先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确2(2016广州模拟)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个几何体的体积为()A. B. C. D.解析:选A由题意可知,该几何体是个圆锥,圆锥的底面半径是1,高是,故该几何体的体积V12.3某几何体的三视图如图所示,则该几何体的体积为()A.2 B. C. D.解析:选B由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为122121.4(2016

11、江西两市联考)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A2 B. C. D3解析:选D由三视图判断该几何体为四棱锥,且底面为梯形,高为x,该几何体的体积V(12)2x3,解得x3.5(2016山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. B.C. D1解析:选C由三视图知,该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为,从而该几何体的体积为121.故选C.6(2016安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A4164 B5164C4162

12、D5162解析:选D由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为24216,两个底面面积之和为222;半圆柱的侧面积为44,两个底面面积之和为212,所以几何体的表面积为5162,故选D.7(2016昆明七校调研)一个正三棱柱被平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.解析:选A依题意,剩余部分所表示的几何体是从正三棱柱ABCA1B1C1(其底面边长是2)中截去三棱锥EA1B1C1 (其中E是侧棱BB1的中点),因此三棱锥EA1B1C1的体积为221,剩余部分的体积为222,因此截去部分体积与剩余

13、部分体积的比值为,选A.8(2015全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.解析:选D由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥设正方体的棱长为1,则三棱锥的体积为V1111,剩余部分的体积V213.所以.9(2016江西赣州二模)某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A16,O1C12,则该几何体的侧面积为()A48 B64 C96 D128解析:选C由几何体的三视图可知该几何体为一个四棱柱

14、因为它的俯视图的直观图是矩形O1A1B1C1,其中O1A16,O1C12,所以俯视图的直观图的面积为12,由平面图形的直观图与原图形面积的关系可知俯视图的面积为24,易知俯视图是边长为6的菱形,又几何体的高为4,所以该几何体的侧面积为46496.故选C.10等腰ABC中,ABAC5,BC6,将ABC沿BC边上的高AD折成直二面角BADC,则三棱锥BACD的外接球的表面积为()A5 B. C10 D34解析:选D依题意,在三棱锥BACD中,AD,BD,CD两两垂直,且AD4,BDCD3,因此可将三棱锥BACD补形成一个长方体,该长方体的长、宽、高分别为3、3、4,且其外接球的直径2R,故三棱锥B

15、ACD的外接球的表面积为4R234,选D.11(2016唐山模拟)三棱锥PABC中,PA平面ABC且PA2,ABC是边长为的等边三角形,则该三棱锥外接球的表面积为()A. B4 C8 D20解析:选C由题意得,此三棱锥外接球即为以ABC为底面,以PA为高的正三棱柱的外接球,因为ABC的外接圆半径r1,外接球球心到ABC的外接圆圆心的距离d1,所以外接球的半径R,所以三棱锥外接球的表面积S4R28,故选C.12(2016海口调研)一锥体的三视图如图所示,则该棱锥的最长棱的棱长为()A. B. C. D.解析:选C依题意,题中的几何体是四棱锥EABB1A1,如图所示(其中ABCDA1B1C1D1是

16、棱长为4的正方体,C1E1),EA,EA1,EB5,EB 1,ABBB1B1A1A1A4,因此该几何体的最长棱的棱长为,选C.二、填空题13(2016四川高考)已知某三棱锥的三视图如图所示,则该三棱锥的体积是_解析:由三视图可得三棱锥如图所示,则V1.答案:14如图是某空间几何体的三视图,则该几何体的体积为_解析:由三视图可知,该几何体是棱长为2,2,1的长方体挖去一个半径为1的半球,所以长方体的体积为2214,半球的体积为13,所以该几何体的体积是4.答案:415(2016海口调研)半径为2的球O中有一内接正四棱柱(底面是正方形,侧棱垂直底面)当该正四棱柱的侧面积最大时,球的表面积与该正四棱

17、柱的侧面积之差是_解析:依题意,设球的内接正四棱柱的底面边长为a、高为h,则有162a2h22ah,即4ah16,该正四棱柱的侧面积S4ah16,当且仅当ha2时取等号因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4221616()答案:16()16(2016山西质检)某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是_解析:由题意可知,该几何体为如图所示的四棱锥PABCD,CD,ABy,AC5,CP,BPx,BP2BC2CP2,即x225y27,x2y2322xy,则xy16,当且仅当xy4时,等号成立此时该几何体的体积V33.答案:3- 13 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3