1、第4讲随机事件的概率最新考纲1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.知 识 梳 理1.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含
2、于事件B)BA(或AB)相等关系若BA且ABAB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,则称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件ABP(AB)13.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)互斥事件概率的加法公式如果事件A与事件
3、B互斥,则P(AB)P(A)P(B).若事件B与事件A互为对立事件,则P(A)1P(B).诊 断 自 测1.判断正误(在括号内打“”或“”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复实验中,概率是频率的稳定值.()(3)若随机事件A发生的概率为P(A),则0P(A)1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案(1)(2)(3)(4)2.袋中装有3个白球,4个黑球,从中任取3个球,则:恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为
4、()A. B.C. D.解析至少有1个白球和全是黑球不同时发生,且一定有一个发生.中两事件是对立事件.答案B3.(2016天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B.C. D.解析设“两人下成和棋”为事件A,“甲获胜”为事件B.事件A与B是互斥事件,所以甲不输的概率PP(AB)P(A)P(B).答案A4.(2017威海模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是_.解析由题意知,所求概率P.答案5.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白
5、球的概率分别是0.40和0.35,那么黑球共有_个.解析任取一球是黑球的概率为1(0.400.35)0.25,黑球有1000.2525(个).答案256.(2017绍兴一中检测)口袋内有一些大小、形状完全相同的红球、黄球和白球,从中任意摸出一球,摸出的球是红球或黄球的概率为0.4,摸出的球是红球或白球的概率为0.9,那么摸出的球是黄球的概率为_;是白球的概率为_.解析设摸出红球的概率是P(A),摸出黄球的概率是P(B),摸出白球的概率是P(C),P(A)P(B)0.4,P(A)P(C)0.9,P(C)1P(A)P(B)0.6,P(B)1P(A)P(C)0.1.答案0.10.6考点一随机事件间的
6、关系【例1】 从1,2,3,4,5这五个数中任取两个数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A. B.C. D.解析从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又中的事件可以同时发生,不是对立事件.答案C规律方法(1)本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含
7、哪些试验结果,从而断定所给事件的关系.(2)准确把握互斥事件与对立事件的概念.互斥事件是不可能同时发生的事件,但可以同时不发生.对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.【训练1】 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A“取出的2球同色”,B“取出的2球中至少有1个黄球”,C“取出的2球至少有1个白球”,D“取出的2球不同色”,E“取出的2球中至多有1个白球”.下列判断中正确的序号为_.A与D为对立事件;B与C是互斥事件;C与E是对立事件;P(CE)1;P(B)P(C).解析当取出的2个球中一黄一白时,B与C都发生,不正确.
8、当取出的2个球中恰有一个白球时,事件C与E都发生,则不正确.显然A与D是对立事件,正确;CE不一定为必然事件,P(CE)1,不正确.由于P(B),P(C),所以不正确.答案考点二随机事件的频率与概率【例2】 (2016全国卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)
9、的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解(1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a0.30a0.251
10、.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.规律方法(1)解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.(2)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.【训练2】 (2015北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购
11、买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3.(3)与(1)同理,
12、可得:顾客同时购买甲和乙的概率可以估计为0.2,顾客同时购买甲和丙的概率可以估计为0.6,顾客同时购买甲和丁的概率可以估计为0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.考点三互斥事件与对立事件的概率【例3】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数/人x3025y10结算时间/(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一
13、次购物的结算时间不超过2分钟的概率(将频率视为概率).解(1)由已知得25y1055,x3045,所以x15,y20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟).(2)记A表示事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A1),P(A2),P(A3).因为AA1A2A3
14、,且A1,A2,A3彼此是互斥事件,所以P(A)P(A1A2A3)P(A1)P(A2)P(A3).故一位顾客一次购物的结算时间不超过2分钟的概率为.规律方法(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)1P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.【训练3】 某商场有奖销售活动中,购满100元商品得1张奖
15、券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则MABC.A,B,C两两互斥,P(M)P(ABC)P(A)P(B)P(C).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”
16、为对立事件,P(N)1P(AB)1.故1张奖券不中特等奖且不中一等奖的概率为.思想方法1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P(A)1P(),即运用逆向思维(正难则反).易错防范1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2
17、.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多”“至少”“不少于”等语句的含义.基础巩固题组(建议用时:40分钟)一、选择题1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,任意两人不能同一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件 B.对立事件C.相互独立事件 D.以上都不对解析由于任意两人不能同一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.答案A2.(2017合肥模
18、拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A.0.7 B.0.65C.0.35 D.0.3解析事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P1P(A)10.650.35.答案C3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率为的事件是()A.至多有一张移动卡 B.恰有一张移动卡C.都不是移动卡 D.至少有一张移动卡解析至
19、多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,因此“至多有一张移动卡”的概率为.答案A4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()A. B. C. D.解析设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有36种不同结果,满足ab的基本事件共有6种.所以摸出编号不同的概率P1.答案C5.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,
20、则一次试验中,事件A发生的概率为()A. B. C. D.解析掷一个骰子的试验有6种可能结果.依题意P(A),P(B),P()1P(B)1,表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A)P(A)P().答案C二、填空题6.在200件产品中,有192件一级品,8件二级品,则下列事件:在这200件产品中任意选出9件,全部是一级品;在这200件产品中任意选出9件,全部是二级品;在这200件产品中任意选出9件,不全是二级品.其中_是必然事件;_是不可能事件;_是随机事件.答案7.给出下列三个命题,其中正确命题有_个.有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做
21、7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生的概率.解析错,不一定是10件次品;错,是频率而非概率;错,频率不等于概率,这是两个不同的概念.答案08.某城市2017年的空气质量状况如表所示:污染指数T3060100110130140概率P其中污染指数T50时,空气质量为优;50T100时,空气质量为良,100T150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为_.解析由题意可知2017年空气质量达到良或优的概率为P.答案三、解答题9.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率
22、0.10.16xy0.2z(1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.解记事件“在竞赛中,有k人获奖”为Ak(kN,k5),则事件Ak彼此互斥.(1)获奖人数不超过2人的概率为0.56,P(A0)P(A1)P(A2)0.10.16x0.56.解得x0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)10.960.04,即z0.04.由获奖人数最少3人的概率为0.44,得P(A3)P(A4)P(A5)0.44,即y0.20.040.44.解得y0.2.10.(2015陕西卷)随机抽取一个年份,对
23、西安市该年4月份的天气情况进行统计,结果如下:日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,
24、其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f.以频率估计概率,运动会期间不下雨的概率为.能力提升题组(建议用时:25分钟)11.设事件A,B,已知P(A),P(B),P(AB),则A,B之间的关系一定为()A.两个任意事件 B.互斥事件C.非互斥事件 D.对立事件解析因为P(A)P(B)P(AB),所以A,B之间的关系一定为互斥事件.答案B12.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_.解析“至少2个小组”包含“2
25、个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P1.答案13.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(AB)_.解析将事件AB分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”.则C,D互斥,且P(C),P(D),P(AB)P(CD)P(C)P(D).答案14.一个袋子中装有大小和形状相同的红球、白球和蓝球,其中有2个红球,3个白球,n个蓝球.(1)若
26、从中任取一个小球为红球的概率为,求n的值;(2)若从中任取一个小球为白球或蓝球的概率为,求从中任取一个小球不是蓝球的概率.解(1)设任取一个小球得到红球、白球、蓝球的事件分别为A,B,C,它们是彼此互斥事件,由已知得P(A),解得n3.(2)P(BC),由对立事件的概率计算公式知,取一个球为红球的概率为P(A)1P(BC)1,解得n1,P(C),从中任取一个小球不是蓝球的概率P(C)1.15.(2017昆明诊断)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)50013010015012
27、0(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24.