收藏 分享(赏)

浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc

上传人:高**** 文档编号:1295136 上传时间:2024-06-06 格式:DOC 页数:9 大小:1.01MB
下载 相关 举报
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第1页
第1页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第2页
第2页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第3页
第3页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第4页
第4页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第5页
第5页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第6页
第6页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第7页
第7页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第8页
第8页 / 共9页
浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 WORD版含答案.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、浙江省金华市金东区傅村镇初级中学2015届高三第二次联合考试数学(文)试题 命题人: 注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自己姓名、考试号填写在答题卡上。2回答第卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号框。写在本卷上无效。3回答第卷时间,将答案写在答题卡上,写在本卷上无效。4考试结束后,将本试卷和答题卡一并交回。第 卷 一、选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设集合,则=( ) A B C D2已知复数,则 等于

2、( ) A. B. C. D. 3. 在约束条件下,目标函数的最大值为()A B C D4命题“使得”的否定是 A,均有B,均有 C使得 D,均有 5已知等差数列满足且,则=( )A B C D6在区间上随机取一个数,则事件“”发生的概率为 ( )A B C D7已知某算法的流程图如图所示,若输入的有序数对为,则输出的有序数对为 ( )A B C D8已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为 ( )A B C D 9已知抛物线的焦点为,准线为,以为圆心,且与相切的圆与抛物线相交于,则( )A B C D 10已知,实数、满足,且,若实数是函数的一个零点,那

3、么下列不等式中,不可能成立的是( )A B C D 11过双曲线的一个焦点作渐近线的垂线,垂足为,交轴于点,若,则该双曲线的离心率为( ) A B.2 C D 12设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )A B. C D 第卷本卷包括必考和选考题两部分。第13题第21题为必考题,每个试题考生都必须作答。第2224题为选考题,其它题为必考题。考生根据要求作答。二填空题:本大题共4小题,每题5分。13已知数列满足,(),数列的前项和,则的值 ,14 外接圆的半径为1,圆心为O,且,则的值是_.15. 在中,内角的对边分别是,若, ,则= . 16.四棱锥的底面是边长为6

4、的正方形,且,若一个半径为1的球与此四棱锥的所有面都相切,则四棱锥的体积是 .三、解答题:解答应写出文字说明,证明过程或演算步骤。17(本小题满分12分) 已知函数()求函数的最小正周期及单调递增区间;()已知,且,求的值18(本小题满分分)为加快新能源汽车产业发展,推进节能减排,国家鼓励消费者购买新能源汽车。某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:分组频数频率1030合计()求,的值;()若用分层抽样的方法从这辆纯电动乘用车中抽取一个容量为6的样本,从该样本中任选辆,求选到的辆车续驶里程为的概率。 第19

5、题图19(本小题满分分)如图,直三棱柱中, ,是的中点,是等腰三角形,为的中点,为上一点且。()证明:平面;()若,求三棱锥的体积。. 20(本小题满分分)已知椭圆的离心率为,短轴一个端点到上焦点的距离为. ()求椭圆的方程;()过点作直线与椭圆相交于两点,直线是过点且与轴平行的直线,设是直线上一动点,满足 (为坐标原点). 问是否存在这样的直线,使得四边形为矩形?若存在,求出直线的方程;若不存在,说明理由.21(本小题满分12分)已知函数()求函数的单调区间;()试问过点可作多少条直线与曲线相切?请说明理由四、选做题(本小题满分10分,请考生22、23、24三题中任选一题做答,如果多做,则按

6、所做的第一题记分)22(本小题满分10分)选修4-1:几何证明选讲 如图,内接于,直线切于点,弦,相交于点. ()求证:;()若,求长.23.(本题满分10分)选修44:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点()求的长;()在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离24(本题满分10分)选修45:不等式选讲设函数。()若不等式的解集为,求的值;(2)若存在,使,求实数的取值范围.一、选择题 题号1234 56789101112答案ABDB D C BACDB C二、填空题:13126 143 15. 16. 27

7、17解:() 所以最小正周期为: 由,得 函数的单调增区间为 6分()由,得 , 12分18解:() 由表格可知,所以,. 4分()设“从这6辆纯电动车中任选辆,选到的辆车续驶里程为”为事件,由分层抽样得在中抽1辆,记为A ,在中抽3辆,记为B1,B2,B3 ,在中抽2辆,记为C1,C2 , 6分则任取两辆共有15种取法(A, B1)(A, B2)(A, B3) (A, C1)(A, C2) (B1, B2)( B1, B3) ( B2, B3) (B1, C1)( B1, C2) ( B2, C1) ( B2, C2) (B3, C1) (B3 , C2) (C1 , C2) 事件有3种情况

8、则. 12分19解析:( ) 取中点为,连结, 分别为中点 ,四点共面, 3分,中点为, 是中点,又为的中点,,又平面 6分()因为三棱柱为直三棱柱,平面,平面 , 平面 , 平面, 所以三棱锥的体积为 12分20解:()由已知得;()由已知可得直线,设设直线,此时,所以存在使得四边形为矩形.21解:() 若,则,在上单调递增; 若,当时,函数在区间上单调递减, 当时,函数在区间上单调递增, 5分() 设过点的直线与曲线相切与点(), 9分令,由()得时,在上单调递减, 上单调递增,所以与轴有两个交点,所以过点可作2条直线与曲线相切。12分四、选做题(本小题满分10分,请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22解(1)在和中 直线是圆的切线 5分 (2) 又 设 又 10分23. 解(1)直线的参数方程化为标准型(为参数) 2分代入曲线方程得设对应的参数分别为,则,所以 5分(2)由极坐标与直角坐标互化公式得直角坐标, 6分所以点在直线, 7分中点对应参数为, 由参数几何意义,所以点到线段中点的距离 1 0分24.解:()由题意可得可化为,即,解得。 5分()令, 所以函数的最小值为,根据题意可得,即。所以的取值范围为。 10 分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3