1、 学习目标 1. 进一步熟练掌握等比数列的通项公式和前n项和公式;2. 会用公式解决有关等比数列的中知道三个数求另外两个数的一些简单问题. 学习过程 一、课前准备(预习教材P57 P62,找出疑惑之处)复习1:等比数列的前n项和公式.当时, 当q=1时, 复习2:等比数列的通项公式. = .二、新课导学 学习探究探究任务:等比数列的前n项和与通项关系问题:等比数列的前n项和, (n2), ,当n1时, . 典型例题例1 数列的前n项和(a0,a1),试证明数列是等比数列.变式:已知数列的前n项和,且, ,设,求证:数列是等比数列.例2 等比数列前n项,前2n项,前3n项的和分别是,求证:,也成
2、等比.变式:在等比数列中,已知,求. 动手试试练1. 等比数列中,求.练2. 求数列1,1+2,1+2+22,1+2+22+23,的前n项和Sn. 三、总结提升 学习小结1. 等比数列的前n项和与通项关系;2. 等比数列前n项,前2n项,前3n项的和分别是,则数列, 也成为等比数列. 知识拓展1. 等差数列中,;2. 等比数列中,. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列中,则( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,q2,使的最小n值是( ).A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)表示二进制的数, 将它转换成十进制的形式是,那么将二进制数(11111111)转换成十进制的形式是( ). A. B. C. D. 4. 在等比数列中,若,则公比q .5. 在等比数列中,则q ,n .来源:学|科|网 课后作业 1. 等比数列的前n项和,求通项.2. 设a为常数,求数列a,2a2,3a3,nan,的前n项和;