收藏 分享(赏)

2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc

上传人:高**** 文档编号:1117350 上传时间:2024-06-04 格式:DOC 页数:14 大小:354KB
下载 相关 举报
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第1页
第1页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第2页
第2页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第3页
第3页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第4页
第4页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第5页
第5页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第6页
第6页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第7页
第7页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第8页
第8页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第9页
第9页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第10页
第10页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第11页
第11页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第12页
第12页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第13页
第13页 / 共14页
2017版高考物理(全国专用)大二轮总复习与增分策略练习 题型研究5 WORD版含解析.doc_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、动量和能量观点的应用1动量定理物体所受合外力的冲量等于物体的动量变化即Ip或Ftp或Ftp1p2,它的表达式是一个矢量方程,即表示动量的变化方向与冲量的方向相同2动量守恒定律:(1)内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变即: p1p2或p1p2.(2)条件:系统不受外力或者所受外力的和为零;系统所受外力远小于系统的内力,可以忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒3动能定理:合外力做的功等于物体动能的变化(这里的合外力指物体受到的所有外力的合力,包括重力、弹力、摩擦力、电场力、磁场力等)表达式为WEk或W总Ek2Ek1.4机械能守恒定律:在只

2、有重力(或弹簧弹力)做功时,没有其他力做功或其他力做功的代数和为零,则系统机械能守恒例1如图1所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的光滑圆弧轨道平滑相连,木块A、B静置于光滑水平轨道上,A、B的质量分别为1.5 kg和0.5 kg.现让A以6 m/s的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s,碰后的速度大小变为4 m/s.当A与B碰撞后会立即粘在一起运动,g取10 m/s2,求:图1(1)在A与墙壁碰撞的过程中,墙壁对A的平均作用力的大小;(2)A、B滑上圆弧轨道的最大高度答案(1)50 N(2)0.45 m解析(1)设水平向右为正方向,当A与墙壁碰

3、撞时根据动量定理有FtmAv1mA(v1)解得F50 N(2)设碰撞后A、B的共同速度为v,根据动量守恒定律有mAv1(mAmB)vA、B在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得(mAmB)v2(mAmB)gh解得h0.45 m.动量和能量综合题的解题思路1仔细审题,把握题意在读题的过程中,必须仔细、认真,要收集题中的有用信息,弄清物理过程,建立清晰的物理情景,充分挖掘题中的隐含条件,不放过任何一个细节2确定研究对象,进行受力分析和运动分析有的题目可能会有多个研究对象,研究对象确定后,必须对它进行受力分析和运动分析,明确其运动的可能性3思考解题途径,正确选用规律根据物体的受力情况

4、和运动情况,选择与它相适应的物理规律及题中给予的某种等量关系列方程求解4检查解题过程,检验解题结果检查过程并检验结果是否符合题意以及是否符合实际情况变式题组1如图2所示,光滑坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下进入水平面,在坡道末端O点无机械能损失现将轻弹簧的一端固定在M处的墙上,另一端与质量为m2的物块B相连A从坡道上滑下来后与B碰撞的时间极短,碰后A、B结合在一起共同压缩弹簧各处摩擦不计,重力加速度为g,求:图2(1)A在与B碰撞前瞬时速度v的大小;(2)A与B碰后瞬间的速度v的大小;(3)弹簧被压缩到最短时的弹性势能Ep.答案(1)(2)(3)解析(1)由机

5、械能守恒定律得m1ghm1v2v(2)A、B在碰撞过程中,由动量守恒定律得m1v(m1m2)vv(3)A、B速度v减为零时,弹簧被压缩到最短,由机械能守恒定律得Ep(m1m2)v2.2如图3所示,光滑水平面上有一具有光滑曲面的静止滑块B,可视为质点的小球A从B的曲面上离地面高为h处由静止释放,且A可以平稳地由B的曲面滑至水平地面已知A的质量为m,B的质量为3m,重力加速度为g,试求:图3(1)A刚从B上滑至地面时的速度大小;(2)若A到地面后与地面上的固定挡板P碰撞,之后以原速率反弹,则A返回B的曲面上能到达的最大高度为多少?答案(1)(2)h解析(1)设A刚滑至地面时速度大小为v1,B速度大

6、小为v2,规定向右为正方向,由水平方向动量守恒得3mv2mv10,由系统机械能守恒得mghmv123mv22联立以上两式解得:v1v2.(2)从A与挡板碰后开始,到A追上B到达最大高度h并具有共同速度v,此过程根据系统水平方向动量守恒得mv13mv24mv根据系统机械能守恒得mgh4mv2mgh联立解得:hh.动力学、动量和能量观点的综合应用解决力学问题的三种解题思路1以牛顿运动定律为核心,结合运动学公式解题,适用于力与加速度的瞬时关系、圆周运动的力与运动的关系、匀变速运动的问题,这类问题关键要抓住力与运动之间的桥梁加速度2从动能定理、机械能守恒定律、能量守恒定律的角度解题,适用于单个物体、多

7、个物体组成的系统的受力和位移问题3从动量定理、动量守恒定律的角度解题,适用于单个物体、多个物体组成的系统的受力与时间问题(不涉及加速度)及相互作用物体系统的碰撞、打击、爆炸、反冲等问题例2如图4所示,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处质量也为m的小球a,从距BC高h的A处由静止释放,沿光滑轨道ABC下滑,在C处与b球正碰并与b黏在一起已知BC轨道距地面的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:图4(1)a球与b球碰前瞬间的速度多大?(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高

8、将摆多高?答案(1)(2)断裂h解析(1)设a球经C点时速度为vC,则由机械能守恒得mghmvC2,解得:vC即a球与b球碰前的速度为.(2)设碰后b球的速度为v,由动量守恒得mvC(mm)v故vvC小球被细绳悬挂绕O摆动时,若细绳拉力为FT,则FT2mg2m,解得FT3mgFT2.8mg,细绳会断裂,小球做平抛运动设平抛的时间为t,则0.5hgt2得t故落点距C的水平距离为xvth小球最终落到地面距C水平距离h处力学规律的优选策略1牛顿第二定律揭示了力的瞬时效应,在研究某一物体所受力的瞬时作用与物体运动的关系时,或者物体受恒力作用,且又直接涉及物体运动过程中的加速度问题时,应采用运动学公式和

9、牛顿第二定律2动量定理反映了力对事件的积累效应,适用于不涉及物体运动过程中的加速度而涉及运动时间的问题3动能定理反映了力对空间的积累效应,对于不涉及物体运动过程中的加速度和时间,而涉及力、位移、速度的问题,无论是恒力还是变力,一般都利用动能定理求解4如果物体只有重力或弹簧弹力做功而不涉及物体运动过程中的加速度和时间,此类问题则首先考虑用机械能守恒定律求解5在涉及相对位移问题时则优先考虑能量守恒定律,及系统克服摩擦力所做的功等于系统机械能的减少量,系统的机械能转化为系统内能6在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,必须注意到一般过程中均含有系统机械能与其他形式能量之间的转化这类问题由于作用时

10、间都很短,动量守恒定律一般大有作为变式题组3如图5所示,一个半径R1.00 m的粗糙圆弧轨道,固定在竖直平面内,其下端切线是水平的,距地面高度h1.25 m在轨道末端放有质量mB0.30 kg的小球B(视为质点),B左侧装有微型传感器,另一质量mA0.10 kg的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6 N,A与B发生正碰,碰后B小球水平飞出,落到地面时的水平位移x0.80 m,不计空气阻力,重力加速度取g10 m/s2.求:图5(1)小球A在碰前克服摩擦力所做的功;(2)A与B碰撞过程中,系统损失的机械能答案(1)0.20 J(2)0.384

11、 J解析(1)在最低点,对A球由牛顿第二定律有FAmAgmA得vA4.00 m/s在A下落过程中,由动能定理有:mAgRWfmAvA2A球在碰前克服摩擦力所做的功Wf0.20 J.(2)碰后B球做平抛运动,在水平方向有xvBt在竖直方向有hgt2联立以上两式可得碰后B的速度vB1.6 m/s对A、B碰撞过程,由动量守恒定律有mAvAmAvAmBvB碰后A球的速度vA0.80 m/s,负号表示碰后A球运动方向向左由能量守恒得,碰撞过程中系统损失的机械能:E损mAvA2mAvA2mBvB2故E损0.384 J在A与B碰撞的过程中,系统损失的机械能为0.384 J.4(2016丽水调研)如图6所示,

12、水平地面上静止放置一辆小车A,质量mA4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计可视为质点的物块B置于A的最右端,B的质量mB2 kg.现对A施加一个水平向右的恒力F10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t0.6 s,二者的速度达到v12 m/s.求:图6(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m解析(1)以A为研究对象,由牛顿第二定律有FmAa代入数据解得a2.5

13、 m/s2(2)对A、B碰撞后共同运动t0.6 s的过程,由动量定理得Ft(mAmB)v1(mAmB)v代入数据解得v1 m/s(3)设A、B发生碰撞前,A的速度为vA,对A、B发生碰撞的过程,由动量守恒定律有mAvA(mAmB)vA从开始运动到与B发生碰撞前,由动能定理有FlmAvA2由式,代入数据解得l0.45 m.1一质量为0.5 kg的小物块放在水平地面上的A点,距离A点5 m的位置B处是一面墙,如图1所示物块以v09 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7 m/s,碰后以6 m/s的速度反向运动直至静止g取10 m/s2.图1(1)求物块与地面间的动摩擦因数

14、;(2)若碰撞时间为0.05 s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W.答案(1)0.32(2)130 N(3)9 J解析(1)由动能定理有mgsmv2mv02可得0.32(2)由动量定理有Ftmvmv可得F130 N(3)Wmv29 J.2(2015绍兴市模拟)如图2所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半两球

15、均可视为质点,忽略空气阻力,重力加速度为g.求:图2(1)小球A刚滑至水平台面的速度vA;(2)A、B两球的质量之比mAmB.答案(1)(2)13解析(1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得mAghmAvA2解得vA(2)设两球碰撞后共同的速度为v,由动量守恒定律得mAvA(mAmB)v粘在一起的两球飞出台面后做平抛运动,设运动时间为t,由运动学公式,在竖直方向上有hgt2在水平方向上有vt联立上述各式得mAmB13.3如图3所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块B静止在圆弧轨道的最低点,现将小滑块A从圆弧轨道的最高点无初速度释放,A与B碰撞后结合为一

16、个整体,并沿桌面滑动已知圆弧轨道光滑,半径R0.2 m,A和B的质量相等,A和B整体与桌面之间的动摩擦因数0.2.取重力加速度g10 m/s2.求:图3(1)碰撞前瞬间A的速率v;(2)碰撞后瞬间A和B整体的速率v;(3)A和B整体在桌面上滑动的距离l.答案(1)2 m/s(2)1 m/s(3)0.25 m解析设滑块A的质量为m.(1)滑块由A到B的过程,根据机械能守恒定律mgRmv2得碰撞前瞬间A的速率v2 m/s(2)碰撞过程中,根据动量守恒定律mv2mv得碰撞后瞬间A和B整体的速率vv1 m/s(3)根据动能定理:(2m)v2(2m)gl得A和B整体沿水平桌面滑动的距离l0.25 m.4

17、如图4所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.图4答案解析设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有mghmv12解得v1设碰撞后小球反弹的速度大小为v1,同理有mgmv12解得v1 设碰后物块

18、的速度大小为v2,取水平向右为正方向,根据动量守恒定律,有mv1mv15mv2解得v2 物块在水平面上滑行所受摩擦力的大小F5mg设物块在水平面上滑行的时间为t,根据动量定律有Ft05mv2解得t解法二:物块在水平面上滑行时做匀减速直线运动,从式以后可以换为以下内容:加速度ag,由运动学公式可得t.5如图5所示,竖直墙面和水平地面均光滑,质量分别为m、3m的A、B两物体如图所示,其中A紧靠墙壁,A、B之间有质量不计的轻弹簧相连,现对B物体缓慢施加一个向左的力,对该物体做功为W,使AB间弹簧被压缩但系统静止,突然撤去向左推力解除压缩,求:图5(1)从撤去外力到物块A离开墙壁的过程中,墙壁对物块A

19、的冲量;(2)在物块A离开墙壁后的运动过程中,物块A、B速度的最小值答案(1)(2)0 解析(1)压缩弹簧时外力做功全部转化为弹性势能撤去外力后,物块B在弹力作用下做加速运动在弹簧恢复原长的过程中,系统的机械能守恒设弹簧恢复原长时,物块B的速度为vB0,有WmvB02vB0 此过程中系统的动量变化即为墙给A的冲量,有I3mvB0联立解得I(2)当弹簧恢复原长时,物块A的速度为最小值vA0.有vA00物块A离开墙壁后,在弹簧的作用下速度逐渐增大,物块B速度逐渐减小当弹簧再一次恢复原长时,物块A达到最大速度vA.物块B的速度减小到最小值vB.在此过程中系统的动量守恒、机械能守恒,有3mvB0mvA

20、3mvBWmvA2mvB2联立可得vB .6(2016浙江4月选考23)某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图6所示竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向下的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值S,用时t,此过程激励出强电流,产生电磁推力加速火箭在t时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体当燃烧室下方的可控喷气孔打开后喷出燃气进一步加速火箭图6(1)求回路在t时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;(2)经t时间火箭恰好脱离导轨,求火箭脱离时的速度v0;(不计空气阻力)(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m的燃气,喷出的燃气相对喷气前火箭的速度为v,求喷气后火箭增加的速度v.(提示:可选喷气前的火箭为参考系)答案(1)向右(2)gt(3)v解析(1)根据电磁感应定律,有qt电流方向向右(2)平均感应电流平均安培力BL(mg)tmv0v0gt(3)以喷气前的火箭为参考系,设竖直向上为正,由动量守恒定律mv(mm)v0得vv.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3