1、课题:集合的基本运算课 型:新授课教学目标:(1)掌握交集与并集的区别,了解全集、补集的意义,(2)正确理解补集的概念,正确理解符号“”的涵义; (3)会求已知全集的补集,并能正确应用它们解决一些具体问题。教学重点:补集的有关运算及数轴的应用。教学难点:补集的概念。教学过程:一、复习回顾:1 提问:.什么叫子集、真子集、集合相等?符号分别是怎样的?2 提问:什么叫交集、并集?符号语言如何表示?3 交集和补集的有关运算结论有哪些?4 讨论:已知Ax|x30,Bx|x3,则A、B与R有何关系?二、新课教学思考1 U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何
2、关系? 由学生通过讨论得出结论:集合B是集合U中除去集合A之后余下来的集合。 (一). 全集、补集概念及性质的教学:1 全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),记作U,是相对于所研究问题而言的一个相对概念。2 补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的补集(complementary set),记作:,读作:“A在U中的补集”,即用Venn图表示:(阴影部分即为A在全集U中的补集) 讨论:集合A与之间有什么关系?借助Venn图分析 巩固练习(口答):U=2,3,4,A=4,3,B=,则= ,= ;设Ux|x8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ; 设U三角形,A锐角三角形,则 。 (二)例题讲解:例1(课本例8)设集,求,例2设全集,求, ,。 (结论:)例3设全集U为R,若 ,求。 (答案:)(三)课堂练习:课本P11练习4归纳小结:补集、全集的概念;补集、全集的符号;图示分析(数轴、Venn图)。作业布置:习题1.1A组,第9,10;B组第4题。课后记: