1、 2.2.1 对数与对数运算(1) 学习目标 1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化. 学习过程 一、课前准备(预习教材P62 P64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺? 复习2:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学 学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,3
2、0亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由,求x.新知:一般地,如果,那么数 x叫做以a为底 N的对数(logarithm).记作 ,其中a叫做对数的底数,N叫做真数 试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm),并把常用对数简记为lgN 在科学技术中常使用以无理数e=2.71828为底的对数,以e为底的对数叫自然对数,并把自然对数简记作lnN 试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系? 时, .(2)负数与零是否有对数?为
3、什么? (3) , . 典型例题例1下列指数式化为对数式,对数式化为指数式.(1) ;(2);(3);(4) ; (5);(6)lg0.001=; (7)ln100=4.606.变式: lg0.001=?小结:注意对数符号的书写,与真数才能构成整体.例2求下列各式中x的值:(1); (2); (3); (4).小结:应用指对互化求x. 动手试试练1. 求下列各式的值. (1) ; (2) ; (3)10000.练2. 探究 三、总结提升 学习小结对数概念;lgN与lnN;指对互化;如何求对数值 知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认
4、为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家纳皮尔(Napier,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若,则( ). A. 4 B. 6 C. 8 D. 92. = ( ).A. 1 B. 1 C. 2 D. 23. 对数式中,实数a的取值范围是( ).A B(2,5)C D 4. 计算: .5. 若,则x=_,若,则y=_. 课后作业 1. 将下列指数式化成对数式,对数式化成指数式.(1); (2); (3)(4); (5);(6); (7).2. 计算: (1); (2); (3); (3); (4).