1、直线与圆、圆与圆的位置关系导学目标: 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想自主梳理1直线与圆的位置关系位置关系有三种:_、_、_.判断直线与圆的位置关系常见的有两种方法:代数法:利用判别式,即直线方程与圆的方程联立方程组消去x或y整理成一元二次方程后,计算判别式b24ac几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr_.2圆的切线方程若圆的方程为x2y2r2,点P(x0,y0)在圆上,则过P点且与圆x2y2r2相切的切线方程为_注:点P必须在圆x2y2r2上经过圆(x
2、a)2(yb)2r2上点P(x0,y0)的切线方程为_3计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算(2)代数方法运用韦达定理及弦长公式AB|xAxB|.说明:圆的弦长、弦心距的计算常用几何方法4圆与圆的位置关系(1)圆与圆的位置关系可分为五种:_、_、_、_、_.判断圆与圆的位置关系常用方法:(几何法)设两圆圆心分别为O1、O2,半径为r1、r2 (r1r2),则O1O2r1r2_;O1O2r1r2_;|r1r2|O1O2r1r2_;O1O2|r1r2|_;0|O1O2|0)的公共弦的长为2,则a_.6已知点A是圆C:x2
3、y2ax4y50上任意一点,A点关于直线x2y10的对称点也在圆C上,则实数a_.7设直线3x4y50与圆C1:x2y24交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧上,则圆C2的半径的最大值是_8(2010全国改编)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为_二、解答题(共42分)9(14分)圆x2y28内一点P(1,2),过点P的直线l的倾斜角为,直线l交圆于A、B两点(1)当时,求AB的长;(2)当弦AB被点P平分时,求直线l的方程自主梳理1相切相交相离相交相切相离相交相切相离2.x0xy0yr2(x0a)(xa
4、)(y0b)(yb)r24.(1)外离外切相交内切内含外离外切相交内切内含(2)(x2y2D1xE1yF1)(x2y2D2xE2yF2)0自我检测1.2.xy203.24.25xy30课堂活动区例1解题导引(1)过点P作圆的切线有三种类型:当P在圆外时,有2条切线;当P在圆上时,有1条切线;当P在圆内时,不存在(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类(3)切线长的求法:过圆C外一点P作圆C的切线,切点为M,半径为R,则PM.解(1)将圆C配方得(x1)2(y2)22.当直线在两坐标轴上的截距为零时,设直线方程为ykx,由,解得k2,得y(2)x.当直
5、线在两坐标轴上的截距不为零时,设直线方程为xya0,由,得|a1|2,即a1,或a3.直线方程为xy10,或xy30.综上,圆的切线方程为y(2)x,或y(2)x,或xy10,或xy30.(2)由POPM,得xy(x11)2(y12)22,整理得2x14y130.即点P在直线l:2x4y30上当PM取最小值时,即OP取得最小值,直线OPl,直线OP的方程为2xy0.解方程组得点P的坐标为.变式迁移1解设圆切线方程为y3k(x2),即kxy32k0,1,k,另一条斜率不存在,方程为x2.切线方程为x2和3x4y60.圆心C为(1,1),kPC2,过两切点的直线斜率为,又x2与圆交于(2,1),过
6、切点的直线为x2y40.例2解题导引(1)有关圆的弦长的求法:已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到l的距离为d,圆的半径为r.方法一代数法:弦长AB|x2x1|;方法二几何法:弦长AB2.(2)有关弦的中点问题:圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系解(1)如图所示,AB4,取AB的中点D,连结CD,则CDAB,连结AC、BC,则AD2,AC4,在RtACD中,可得CD2.当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y5kx,即kxy50.由点C到直线AB的距离公式,得2,解得k.当k时,直线l的方程为3x4
7、y200.又直线l的斜率不存在时,也满足题意,此时方程为x0.所求直线的方程为3x4y200或x0.(2)设过P点的圆C的弦的中点为D(x,y),则CDPD,即0,(x2,y6)(x,y5)0,化简得所求轨迹方程为x2y22x11y300.变式迁移2(1)证明由kxy4k30,得(x4)ky30.直线kxy4k30过定点P(4,3)由x2y26x8y210,即(x3)2(y4)24,又(43)2(34)224.直线和圆总有两个不同的交点(2)解kPC1.可以证明与PC垂直的直线被圆所截得的弦AB最短,因此过P点斜率为1的直线即为所求,其方程为y3x4,即xy10.PC,AB22.例3解题导引圆
8、和圆的位置关系,从交点个数也就是方程组解的个数来判断,有时得不到确切的结论,通常还是从圆心距d与两圆半径和、差的关系入手解对于圆C1与圆C2的方程,经配方后C1:(xm)2(y2)29;C2:(x1)2(ym)24.(1)如果C1与C2外切,则有32.(m1)2(m2)225.m23m100,解得m5或m2.(2)如果C1与C2内含,则有32.(m1)2(m2)21,m23m20,得2m1,当m5或m2时,圆C1与圆C2外切;当2m0,b26b90,解得33b0.即直线AB的方程为xy40,或xy10.变式迁移4解(1)直线l过点A(0,1)且斜率为k,直线l的方程为ykx1.将其代入圆C:(
9、x2)2(y3)21,得(1k2)x24(1k)x70.由题意:4(1k)24(1k2)70,得k.(2)设M(x1,y1),N(x2,y2),则由得,x1x2y1y2(1k2)x1x2k(x1x2)1812k1(经检验符合题意),k1.课后练习区1相交2.3或32解析如图所示,x2y24y0x2(y2)24,A(0,2),OA2,A到直线l:yx的距离是AN1,ON,弦长OJ2.4(4,6)5.16.1071解析圆C1的圆心C1(0,0)到直线3x4y50的距离为1,圆C1的半径为2,弧上的点到直线3x4y50距离最大为211,因此圆C2的半径最大为1.832解析设APB2,则APOBPO,()2cos 2cos 2(12sin2)2sin2323,当且仅当2sin2,即sin2时取等号9解(1)当时,kAB1,直线AB的方程为y2(x1),即xy10.(3分)故圆心(0,0)到AB的距离d,从而弦长AB2 .(7分)(2)设A(x1,y1),B(x2,y2),则x1x22,y1y24.由两式相减得(x1x2)(x1x2)(y1y2)(y1y2)0,即2(x1x2)4(y1y2)0,kAB.(12分)直线l的方程为y2(x1),即x2y50.(14分)