1、考点测试16导数的应用(二)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3会用导数解决实际问题一、基础小题1函数f(x)xln x的单调递增区间为()A(,0) B(0,1)C(1,) D(,0)(1,)答案C解析函数的定义域为(0,)f(x)1,令f(x)0,得x
2、1.故选C.2已知奇函数f(x)是函数f(x)(xR)的导函数,若x0时,f(x)0,则()Af(0)f(log32)f(log23)Bf(log32)f(0)f(log23)Cf(log23)f(log32)f(0)Df(log23)f(0)f(log32)答案C解析因为f(x)是奇函数,所以f(x)是偶函数所以f(log23)f(log23),而log23log221,0log321,所以0log320时,f(x)0,所以f(x)在(0,)上是增函数,所以f(log23)f(log32)f(0),所以f(log23)f(log32)f(0)3若曲线f(x),g(x)x在点P(1,1)处的切
3、线分别为l1,l2,且l1l2,则实数的值为()A2 B2 C D答案A解析f(x),g(x)x1,所以曲线f(x),g(x)在点P处的切线斜率分别为k1,k2,因为l1l2,所以k1k21,所以2,选A.4函数y的图象大致为()答案C解析因为y,所以y,令y0,则x0,令y0,令y0,则x0,所以函数y在(,0)上为增函数,在(0,)上为减函数,且x0是函数的极大值点,结合4个函数的图象,故选C.5若函数f(x)2x2ln x在其定义域内的一个子区间(k1,k1)内不是单调函数,则实数k的取值范围是()A1,) BC1,2) D答案B解析因为f(x)的定义域为(0,),f(x)4x,由f(x
4、)0,得x.据题意得解得1k.故选B.6已知定义在(0,)上的函数f(x),满足f(x)f(2) Be2f(1)f(2)C9f(ln 2)4f(ln 3) D9f(ln 2)4f(ln 3)答案A解析令h(x),则h(x)h(2),即,所以e2f(1)f(2),ln 2h(ln 3),即,所以9f(ln 2)4f(ln 3)故选A.7已知函数f(x)ax3bx2cx17(a,b,cR)的导函数为f(x),f(x)0的解集为x|2x3,若f(x)的极小值等于98,则a的值是()A B C2 D5答案C解析由题意,f(x)3ax22bxc,因为f(x)0的解集为x|2x3,所以a0,且23,23,
5、则3a2b,c18a,又f(x)的极小值为f(3)27a9b3c1798,解得a2,b3,c36,故选C.8已知函数f(x)的导函数为f(x)5cosx,x(1,1),且f(0)0,如果f(1x)f(1x2)0,则实数x的取值范围为_答案(1,)解析导函数f(x)是偶函数,且f(0)0,原函数f(x)是奇函数,且定义域为(1,1),又导函数值恒大于0,原函数在定义域上单调递增,所求不等式变形为f(1x)f(x21),11xx211,解得1x0恒成立,当a1时,f(x)minf(a)2aa20,0a1时,f(x)xaln x0恒成立,即a恒成立设g(x),则g(x).令g(x)0,得xe,且当1
6、xe时,g(x)e时,g(x)0,g(x)ming(e)e,ae.综上,a的取值范围是0ae,即0,e故选C.10(2017山东高考)若函数exf(x)(e2.71828是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质下列函数中具有M性质的是()Af(x)2x Bf(x)x2Cf(x)3x Df(x)cosx答案A解析当f(x)2x时,exf(x)x.1,当f(x)2x时,exf(x)在f(x)的定义域上单调递增,故函数f(x)具有M性质易知B,C,D不具有M性质,故选A.11(2015全国卷)设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0使得f(
7、x0)0,则a的取值范围是()A. BC. D答案D解析由f(x0)0,即ex0(2x01)a(x01)0,得a(x01)当x01时,得e1,则a .令g(x),则g(x).当x时,g(x)0,g(x)为增函数,要满足题意,则x02,此时需满足g(2)ag(3),得3e2ae3,与a1矛盾,所以x01.因为x01,所以a0,g(x)为增函数,当x(0,1)时,g(x)0,g(x)为减函数,要满足题意,则x00,此时需满足g(1)ag(0),得a1(满足a2;a0,b2;a1,b2.答案解析设f(x)x3axb.当a3,b3时,f(x)x33x3,f(x)3x23,令f(x)0,得x1或x1;令
8、f(x)0,得1x2时,f(x)x33xb,易知f(x)的极大值为f(1)2b0,极小值为f(1)b20,x时,f(x),故方程f(x)0有且仅有一个实根,故正确当a0,b2时,f(x)x32,显然方程f(x)0有且仅有一个实根,故正确当a1,b2时,f(x)x3x2,f(x)3x210,则f(x)在(,)上为增函数,易知f(x)的值域为R,故f(x)0有且仅有一个实根,故正确综上,正确条件的编号有.三、模拟小题14(2019河南豫南九校联考)设定义在(0,)上的函数f(x)的导函数f(x)满足xf(x)1,则()Af(2)f(1)ln 2 Bf(2)f(1)1 Df(2)f(1)1f(x)(
9、ln x),即f(x)(ln x)0.令F(x)f(x)ln x,则F(x)在(0,)上单调递增,故f(2)ln 2f(1)ln 1,即f(2)f(1)ln 2.15(2019安阳模拟)已知函数f(x)与g(x)6xa的图象有3个不同的交点,则a的取值范围是()A. BC. D答案B解析原问题等价于函数h(x)6x的图象与直线ya有三个不同的交点h(x)x2x6(x2)(x3),当x(,3)时,h(x)0,h(x)单调递增;当x(3,2)时,h(x)0,h(x)单调递增函数h(x)的图象如图所示又h(3),h(2),数形结合可得a的取值范围是.故选B.16(2019沈阳质量监测(三)已知函数f
10、(x)aln x2x,若不等式f(x1)ax2ex在x(0,)上恒成立,则实数a的取值范围是()Aa2 Ba2 Ca0 D0a2答案A解析由函数f(x)aln x2x,得f(ex)aln ex2exax2ex.f(x1)ax2ex,即f(x1)f(ex),因为x0时,1x11时,f(x)20恒成立,即a2x在(1,)上恒成立,所以a2,故选A.17(2019徐州模拟)已知函数f(x),g(x),若函数yfg(x)a有三个不同的零点x1,x2,x3(其中x1x20),所以函数g(x)在(e,)上单调递减,在(0,e)上单调递增,所以g(x)maxg(e),作出函数g(x)的大致图象如图2所示f.
11、因为fg(x)a0有三个不同的零点,所以yfg(x)的图象与直线ya有三个不同的交点,所以a,即a.令g(x)t,则问题等价于方程a0,即t2(a1)t1a0有两个解t1,t2,不妨设t10;当x时,g(x)0,g()2,故g(x)在(0,)存在唯一零点所以f(x)在区间(0,)存在唯一零点(2)由题设知f()a,f()0,可得a0.由(1)知,f(x)在(0,)只有一个零点,设为x0,且当x(0,x0)时,f(x)0;当x(x0,)时,f(x)0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减又f(0)0,f()0,所以当x0,时,f(x)0.又当a0,x0,时,ax0,故f(
12、x)ax.因此,a的取值范围是(,02(2019天津高考)设函数f(x)ln xa(x1)ex,其中aR.(1)若a0,讨论f(x)的单调性;(2)若0ax0,证明3x0x12.解(1)由已知,f(x)的定义域为(0,),且f(x)aexa(x1)ex.因此当a0时,1ax2ex0,从而f(x)0,所以f(x)在(0,)内单调递增(2)证明:由(1)知,f(x).令g(x)1ax2ex,由0a0,且g1a2120,故g(x)0在(0,)内有唯一解,从而f(x)0在(0,)内有唯一解,不妨设为x0,则1x00,所以f(x)在(0,x0)内单调递增;当x(x0,)时,f(x)1时,h(x)11时,
13、h(x)h(1)0,所以ln xx1,从而fln aeln ln ln 1hf(1)0,所以f(x)在(x0,)内有唯一零点又f(x)在(0,x0)内有唯一零点1,从而,f(x)在(0,)内恰有两个零点由题意,即从而ln x1ex1x0,即ex1x0.因为当x1时,ln xx01,故ex1x0x,两边取对数,得ln ex1x0ln x,于是x1x02ln x02.3(2019江苏高考)设函数f(x)(xa)(xb)(xc),a,b,cR,f(x)为f(x)的导函数(1)若abc,f(4)8,求a的值;(2)若ab,bc,且f(x)和f(x)的零点均在集合3,1,3中,求f(x)的极小值;(3)
14、若a0,0b1,c1,且f(x)的极大值为M,求证:M.解(1)因为abc,所以f(x)(xa)(xb)(xc)(xa)3.因为f(4)8,所以(4a)38,解得a2.(2)因为bc,所以f(x)(xa)(xb)2x3(a2b)x2b(2ab)xab2,从而f(x)3(xb).令f(x)0,得xb或x.因为a,b,都在集合3,1,3中,且ab,所以1,a3,b3.此时,f(x)(x3)(x3)2,f(x)3(x3)(x1)令f(x)0,得x3或x1.列表如下:x(,3)3(3,1)1(1,)f(x)00f(x)极大值极小值所以f(x)的极小值为f(1)(13)(13)232.(3)证明:因为a
15、0,c1,所以f(x)x(xb)(x1)x3(b1)x2bx,f(x)3x22(b1)xb.因为0b1,所以4(b1)212b(2b1)230,则f(x)有2个不同的零点,设为x1,x2(x1x2)由f(x)0,得x1,x2.列表如下:x(,x1)x1(x1,x2)x2(x2,)f(x)00f(x)极大值极小值所以f(x)的极大值Mf(x1)证法一:Mf(x1)x(b1)xbx13x2(b1)x1bx1()3()3.因此M.证法二:因为0b1,所以x1(0,1)当x(0,1)时,f(x)x(xb)(x1)x(x1)2.令g(x)x(x1)2,x(0,1),则g(x)3(x1)令g(x)0,得x
16、.列表如下:xg(x)0g(x)极大值所以当x时,g(x)取得极大值,且是最大值,故g(x)maxg.所以当x(0,1)时,f(x)g(x).因此M.二、模拟大题4(2019吉林省长春市高三第二次模拟)已知函数f(x)exbx1(bR)(1)讨论f(x)的单调性;(2)若方程f(x)ln x有两个实数根,求实数b的取值范围解(1)由题可得,f(x)exb,当b0时,f(x)0,f(x)在(,)上单调递增;当b0时,若xln (b),则f(x)0,f(x)在ln (b),)上单调递增;若xln (b),则f(x)0,f(x)在(,ln (b)上单调递减(2)令g(x)exbx1ln x,则g(x
17、)exb,易知g(x)单调递增且一定有大于0的零点,不妨设为x0,g(x0)0,即ex0b0,bex0,故若g(x)有两个零点,需满足g(x0)0,即ex0bx01ln x0ex0x01ln x0ex0ex0x0ln x00.令h(x)exexxln x,h(x)exx0,所以h(x)在(0,)上单调递减,由h(1)0,得ex0ex0x0ln x00的解集为(1,),由bex0,得b1e.当b1e时,exbx1ln xxbxln x,有g(eb)ebbebln eb(b1)ebb,令(x)(x1)exx(x1)(ex1)1,由于x1e,所以x12e0,ex1,故(x)(x1)exx0,所以g(
18、eb)0,故g(eb)g(x0)0,g(x)在(0,x0)上有唯一零点,另一方面,在(x0,)上,当x时,由ex增长速度大,所以有g(x)0,即g(x)在(x0,)上有唯一零点故当bx1.解(1)f(x)a(x0)若a0,则f(x)0,f(x)在(0,)上单调递增若a0,f(x)在上单调递增;当x时,f(x)0,f(x)在上单调递减综上可知,当a0时,f(x)在(0,)上单调递增;当a0),所以g(x)在(0,)上单调递增又g(1)a10,gln 24a0,故g(x)存在零点x2,且g(x)在区间(0,x2)上单调递减,在区间(x2,)上单调递增,x2即为g(x)的极小值点,故x2x1.由g(x1)0知,ln x1a0,所以f(x1)ln x1ax1ln x1x1(1x1)ln x1,又x1x2,所以f(x1)(1x1)ln x1x1.