1、3.2.1古典概型知识网络 基本事件等可能事件古典概型计算公式学习要求1、 理解基本事件、等可能事件等概念;正确理解古典概型的特点;2、会用枚举法求解简单的古典概型问题;掌握古典概型的概率计算公式。【课堂互动】自学评价1、基本事件: 2、等可能基本事件: 。3、如果一个随机试验满足:(1) ;(2) ; 那么,我们称这个随机试验的概率模型为古典概型4、古典概型的概率:如果一次试验的等可能事件有个,那么,每个等可能基本事件发生的概率都是 ;如果某个事件包含了其中个等可能基本事件,那么事件发生的概率为 【经典范例】例1 一个口袋内装有大小相同的5只球,其中3只白球,只黑球,从中一次摸出两个球,(1
2、)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?【分析】可用枚举法找出所有的等可能基本事件【解】例2 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为,决定矮的基因记为,则杂交所得第一子代的一对基因为,若第二子代的基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因则其就是高茎,只有两个基因全是时,才显现矮茎)【分析】由于第二子代的基因的遗传是等可能的,可以将各种可能的遗传情形都枚举出来【解】思考:第三代高茎的概率呢?例3 一次抛掷两枚均匀硬币(1)写出所有的等可能基本事件;(2)求出现两个正面的概率;【解】例4 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率【分析】
3、掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型【解】【小结】利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏例5 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率【解】追踪训练1、在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )A B C D以上都不对2、盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A B C D 3、 判断
4、下列命题正确与否.(1)掷两枚硬币,可能出现“两个正面”,“两个反面”,“一正一反”3种结果;(2)某袋中装有大小均匀的三个红球,两个黑球,一个白球,那么每种颜色的球被摸到的可能性相同;(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;(4)分别从3名男同学,4名女同学中各选一名作代表,那么每个同学当选的可能性相同.4、有甲,乙,丙三位同学分别写了一张新年贺卡然后放在一起,现在三人均从中抽取一张.(1)求这三位同学恰好都抽到别人的贺卡的概率.(2)求这三位同学恰好都抽到自己写的贺卡的概率.3.2.2古典概型知识网络 基本事件等可能事件古典概型计算公式学
5、习要求 1、进一步掌握古典概型的计算公式;2、能运用古典概型的知识解决一些实际问题。【课堂互动】【经典范例】例1 将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果? (2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?【解】()将骰子抛掷次,它出现的点数有这6中结果。先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又都有6种可能的结果,于是一共有种不同的结果;(2)第1次抛掷,向上的点数为这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为
6、3的倍数),于是共有种不同的结果(3)记“向上点数和为3的倍数”为事件,则事件的结果有种,因为抛两次得到的36中结果是等可能出现的,所以所求的概率为答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有种;点数和是的倍数的概率为;说明:也可以利用图表来数基本事件的个数:例2 用不同的颜色给下图中的3个矩形随机的涂色,每个矩形只涂一种颜色,求(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率【分析】本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)【解】基本事件共有个;(1)记事件“3个矩形涂同一种颜色”,由上图可以知道事件包含的基本事件
7、有个,故(2)记事件“3个矩形颜色都不同”,由上图可以知道事件包含的基本事件有个,故答:3个矩形颜色都相同的概率为;3个矩形颜色都不同的概率为【小结】古典概型解题步骤:阅读题目,搜集信息;判断是否是等可能事件,并用字母表示事件;求出基本事件总数和事件所包含的结果数;用公式求出概率并下结论.例3 现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率【解】【小结】关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式
8、,观察的角度必须一致,否则会导致错误例4 一次投掷两颗骰子,求出现的点数之和为奇数的概率【解】追踪训练1、据人口普查统计,育龄妇女生男生女是近似等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率约是( ) A B. C D2、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 3、从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 4、已知集合A=,在平面直角坐标系中,点M的坐标为,其中,且,计算:(1)点M不在轴上的概率;(2)点M在第二象限的概率.w.w.w.k.s.5.u.c.o.m