1、热点与突破常考问题5 导数的综合应用热点与突破 真题感悟 考题分析热点与突破热点与突破(1)求m的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大(保留一位小数)热点与突破热点与突破热点与突破规律方法 在利用导数求实际问题中的最大值和最小值时,不仅要注意函数模型中的定义域,还要注意实际问题的意义,不符合的解要舍去热点与突破【训练1】(2011江苏卷)请你给某厂商设计一个包装盒如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四
2、个点重合于点P,正好形成一个正四棱柱形状的包装盒E,F在AB上,且是被切去的一个等腰直角三角形斜边的两个端点设AEFBx(cm)热点与突破(1)若厂商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)若厂商要求包装盒的体积V(cm3)最大,试问x应取何值并求出此时包装盒的高与底面边长的比值热点与突破热点与突破热点二 利用导数解决不等式的有关问题【例2】(2013新课标全国卷)已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x2.(1)求a,b,c,d的值;(2)若x2时,f(x)kg(x),求k的取值范围
3、解(1)因为曲线yf(x)和曲线yg(x)都过点P(0,2),所以bd2;因为f(x)2xa,故f(0)a4;g(x)ex(cxdc),故g(0)2c4,故c2.从而a4,b2,c2,d2.热点与突破热点与突破热点与突破规律方法 涉及不等式证明或恒成立问题,常依据题目特征,恰当构建函数,利用导数研究函数性质,转化为求函数的最值、极值问题在转化过程中,一定要注意等价性,对于含参数的不等式,注意分离参数与分类讨论;必要时,可作出函数图象草图,借助几何直观分析转化热点与突破热点与突破(2)证明 当a1时,f(x)ln xx3,所以f(1)2,由(1)知f(x)ln xx3在(1,)上单调递增,所以当x(1,)时,f(x)f(1)即f(x)2,所以f(x)20.热点与突破热点与突破热点与突破热点与突破热点与突破热点与突破规律方法(1)本题第(1)问,利用了函数单调的充分条件:“若f(x)0,则f(x)单调递增,若f(x)0,则f(x)单调递减”;求出函数的单调区间,而对于函数的最值需谨记函数在闭区间上一定存在最值,在开区间上函数不一定存在最值,若存在,一定是极值(2)本题第(2)问,借助转化与数形结合的思想,把方程根的个数转化为两个函数图象交点的个数,利用极值解决问题热点与突破热点与突破热点与突破