收藏 分享(赏)

2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt

上传人:a**** 文档编号:970142 上传时间:2025-12-20 格式:PPT 页数:24 大小:776.50KB
下载 相关 举报
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第1页
第1页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第2页
第2页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第3页
第3页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第4页
第4页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第5页
第5页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第6页
第6页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第7页
第7页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第8页
第8页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第9页
第9页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第10页
第10页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第11页
第11页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第12页
第12页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第13页
第13页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第14页
第14页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第15页
第15页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第16页
第16页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第17页
第17页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第18页
第18页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第19页
第19页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第20页
第20页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第21页
第21页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第22页
第22页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第23页
第23页 / 共24页
2012高考总复习数学文科新人教B版课件第3单元 第3节 三角函数的图像与性质.ppt_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第三节 三角函数的图象与性质基础梳理1.周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有_,那么函数f(x)就叫做周期函数_叫做这个函数的周期(2)最小正周期如果在周期函数f(x)的所有周期中存在一个_,那么这个_就叫做函数f(x)的最小正周期非零常数Tf(x+T)=f(x)最小的正数最小正数函数y=sin xy=cos xy=tan x图象定义域xRxRxR且x +k,kZ值域单调性_上递增,kZ;_上递减,kZ_上递增,kZ;_上递减,kZ_上递增,kZ2.正弦函数、余弦函数、正切函数的图象和性质y|-1y1 y|-1y1 R(2k

2、-1),2k 2kp,(2k+1)p 函数y=sin xy=cos xy=tan x最值x=_(kZ)时,ymax=1;x=_(kZ)时,ymin=-1x=_(kZ)时,ymax=1;x=_(kZ)时,ymin=-1无最值奇偶性对称性对称中心对称中心对称中心对称轴对称轴对称轴最小正周期2kpp+2kp奇奇偶(kp,0)(kZ)x=kp+(kZ)x=kp(kZ)无2p 2p p 基础达标1.(教材改编题)函数y=sin 2x是()A.周期为p的奇函数 B.周期为p的偶函数C.周期为2p的奇函数D.周期为2p的偶函数A 解析:T=p.2.函数y=sin的一条对称轴方程是()A.x=-B.x=-C.

3、x=D.x=pA解析:sin令2x=kp(kZ),得x=,当k=-1时,x=-故其中一条对称轴方程为x=-=cos 2x,3.函数y=tan的定义域是()C.x|xkp+,kZ,xRA.x|x,xRB.x|x-,xRD.x|xkp+,kZ,xRD解析:要使y=tan=-tan有意义,kp+(kZ),解得xkp+p(kZ)只要x-4.(2010江西)函数y=sin2x+sin x-1的值域为()C.D.A.-1,1 B.C解析:y=-1sin x1,当sin x=-时,y有最小值-当sin x=1时,y有最大值5.(教材改编题)函数y=sin的单调递增区间为_,kZ,2kp+x-解析:令2kp-

4、x2kp+则2kp-p,递增区间为经典例题题型一 求三角函数的定义域【例1】求函数y=+lg(2sin x-1)的定义域分析:求定义域关键:注意所有函数本身的定义域,如偶次根式的被开方数非负,对数函数的真数应大于0.解:由题意得即分别由三角函数线得+2kpxp+2kp,kZ.题型二 三角函数的最值和值域【例2】求下列函数的值域(1)y=sin2x-cos x+2;(2)y=分析:(1)解析式中只有sin2x,cos x,可以考虑转化为关于cos x的二次函数形式;(2)分离常数,利用单调性求值域或反解sin x,利用sin x的有界性(|sin x|1)构造关于y的不等式求解解(1)y=sin

5、2x-cosx+2=1-cos2x-cosx+2 =-cos2x-cosx+3=函数值域为(2)方法一:当sin x=-1时,y有最小值函数的值域为方法二:由y=得sin x=又-1sin x1,函数的值域为【例3】求下列函数的单调区间:(1)y=2sin的递减区间;的递减区间(2)y=tan题型三 三角函数的单调性分析:(1)把x-先作为一个整体代入y=sinx的相应单调区间内,求出x 的范围即为y的单调区间作为一个整体代入y=tan x的相应单调区间内,即可求出y=tan 的单调区间(2)先把y=tan化为y=-tan,再把2x-解:(1)由2kp+x-2kp+p,kZ,(kZ)px2kp

6、+p,kZ,得2kp+的单调减区间为函数y=2sin(2)把函数y=tan变为y=-tan(kZ)由kp-2x-,kZ,得kp+2xkp+p,kZ,kp-x0,x(-,+),且以为最小正周期(1)求f(0);(2)求f(x)的解析式;(3)已知f,求sin a的值知识准备:1.掌握特殊角的三角函数值sin2.知道sin(wx+F)的最小正周期为T=3.掌握诱导公式:sin4.掌握同角三角函数关系式:sin2a+cos2a=1,且会灵活运用=cos a;解:(1)f(0)=3sin=(2)=T=,|w|=4.=3cos a=cos a=sin a=又w0,w=4,f(x)=3sin=3sin(3)=3sin

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1