1、八年级数学上册第十四章整式的乘法与因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知4x2-2(k+1)x+1是一个完全平方式,则k的值为()A2B2C1D1或-32、已知,当时,则的值
2、是()ABCD3、下列运算结果正确的是()Aa2+a4a6Ba2a3a6C(a2)3a6Da8a2a64、若多项式因式分解的结果为,则常数的值为()AB2CD65、已知a、b、c为ABC的三边,且满足a2c2b2c2a4b4,则ABC是()A直角三角形B等腰三角形C等腰三角形或直角三角形D等腰直角三角形6、的计算结果是( )ABCD7、若的结果中不含项,则的值为()ABCD8、下列计算正确的是()ABCD9、下列运算正确的是()Aa2a3a6Ba2a2a4C(ab)2a2b2D(a)3a2a510、化简:a(a-2)+4a=()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共
3、计20分)1、因式分解:_2、已知x2+y210,xy3,则x+y_3、若a+b4,ab1,则(a+2)2(b2)2的值为_4、因式分解:_5、已知am=3,an=2,则a2mn的值为_三、解答题(5小题,每小题10分,共计50分)1、(1)已知a+b=3,a2+b2=5,求ab的值;(2)若3m=8,3n=2,求32m-3n+1的值2、先化简,再求值:(x2y)(x+2y)+(x+y)(x4y),其中x1,y23、解答下列问题:(1)已知,求的值;(2)若,求的值4、如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮
4、,选用草皮的价格是每平米a元,(1)求买草皮至少需要多少元?(用含a,x的式子表示)(2)计算a40,x2时,草皮的费用5、运用十字相乘法分解因式:(1);(2);(3);(4)-参考答案-一、单选题1、D【解析】【分析】利用完全平方公式的结构特征判断即可确定出k的值【详解】解:4x2-2(k+1)x+1是关于x的完全平方式,2(k+1)=4,解得:k=1或k=-3,故选:D【考点】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键2、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已
5、知式,求值式的特征,采用适当的变形,作为解决问题的突破口3、D【解析】【分析】根据整式的运算直接进行排除选项即可【详解】解:A、a2+a4,无法合并,故此选项错误;B、a2a3a5,故此选项错误;C、(a2)3a6,故此选项错误;D、a8a2a6,正确;故选:D【考点】本题主要考查整式的运算,熟练掌握整式的运算是解题的关键4、B【解析】【分析】根据多项式的乘法法则计算出的结果,然后与比较即可【详解】解:=x2+2x-8=,m=2故选B【考点】此题考查了十字相乘法和整式的乘法,熟练掌握因式分解和整式的乘法是互为逆运算是解本题的关键5、C【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关
6、系,再确定出ABC的形状即可得解【详解】解:移项得,a2c2b2c2a4+b4=0,c2(a2b2)(a2+b2)(a2b2)=0,(a2b2)(c2a2b2)=0,所以,a2b2=0或c2a2b2=0,即a=b或a2+b2=c2,因此,ABC等腰三角形或直角三角形故选:C【考点】本题考查了因式分解的应用以及勾股定理的逆定理的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键6、C【解析】【分析】根据平方差公式进行计算即可【详解】故选C【考点】本题考查了平方差公式,掌握平方差公式是解题的关键7、A【解析】【分析】利用多项式乘多项式运算法则将原式展开,然后合并同类项,使x
7、y项系数为零即可解答【详解】=,的结果中不含项,m+4=0,解得:m=4,故选:A【考点】本题考查多项式乘多项式,熟练掌握多项式乘多项式的运算法则,会根据多项式积中不含某项的系数为零求解参数是解答的关键8、C【解析】【分析】直接利用同底数幂的乘除运算法则、幂的乘方和积的乘方运算法则分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项正确;D、,故此选项错误;故选C【考点】此题主要考查了同底数幂的乘除运算、幂的乘方和积的乘方运算,正确掌握相关运算法则是解题关键9、D【解析】【分析】根据完全平方公式、同底数幂的乘法,即可解答【详解】A. 根据同底数幂的乘法计算得:,选
8、项错误;B. 根据合并同类项计算得:,选项错误;C. 根据完全平方公式计算得:,选项错误;D. 根据同底数幂的乘法计算得:,选项正确;故选:D【考点】本题考查了完全平方公式、同底数幂的乘法,解决本题的关键是熟记完全平方公式10、A【解析】【分析】先利用单项式乘多项式计算,再合并同类项即可【详解】解:=故选:A【考点】本题考查整式的乘法运算,主要考单项式乘多项式单项式乘多项式就是用这个单项式去乘多项式的每一项,再把所得的结果相加二、填空题1、【解析】【分析】根据平方差公式直接进行因式分解即可【详解】解:,故答案为:【考点】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键2、4【解析
9、】【分析】先根据完全平方公式可:(x+y)2=x2+y2+2xy,求出(x+y)2的值,然后两边开平方即可求出x+y的值.【详解】由完全平方公式可得:(x+y)2=x2+y2+2xy,x2+y2=10,xy=3(x+y)2=16x+y=4,故答案为4【考点】本题考查了完全平方公式,熟练掌握完全平方公式:(x+y)2=x2+y2+2xy是解答本题的关键.3、20【解析】【分析】先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可【详解】将代入得:原式故答案为:20【考点】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握4、
10、【解析】【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=故答案为:【考点】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键5、4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可【详解】详解:am=3,a2m=32=9,a2m-n=4.5故答案为4.5【考点】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:底数a0,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时
11、,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么三、解答题1、(1)2;(2)24;【解析】【分析】(1)运用完全平方公式求解;(2)利用同底数幂的乘除法,幂的乘方与积的乘方化成含有3m,3n的式子求解【详解】(1)(a+b)2-(a2+b2)2=9-52=2;(2)3m=8,3n=232m-3n+1=(3m)2(3n)33=6483=24【考点】本题主要考查了完全平方公式,同底数幂的乘除法,幂的乘方与积的乘方,解题的关键是熟记法则和公式求解.2、2x23xy8y2,-24【解析】【分析】直接利用乘法公式以及多项式乘多项式计算,再合并同类项,把已知数据代入即可求出得出答案【
12、详解】解:原式x24y2+x24xy+xy4y22x23xy8y2,当x1,y2时,原式21231(2)8(2)22+63224【考点】此题主要考查整式的化简求值,解题的关键是熟知乘法公式以及多项式乘多项式运算法则3、(1)1500;(2)27【解析】【分析】(1)先逆用积的乘方和幂的乘方运算法则,然后将已知代入即可解答;(1)先由得3x+4y=3,然后逆用积的乘方和幂的乘方运算法则将【详解】解:(1),;(2),【考点】本题考查了积的乘方和幂的乘方法则的逆用,灵活应用相关运算法则是解答本题的关键4、(1)(640-52x+ x2)a;(2)21600元.【解析】【分析】(1)先求出小路的面积
13、,再用总面积减去小路面积,得到耕地面积,再乘以草皮的价格即可得出答案;(2)把a=40,x=2代入(1)中的代数式,即可求出草皮的费用【详解】解:(1)依题意,得32x+(20-x)x=32x+20x-x2=52x-x2(平方米),3220-(52x-x2)=640-52x+ x2所以买草皮至少需要(640-52x+ x2)a元;(2)当a=40,x=2时,(640-52x+ x2)a =(640-522+22)40=21600(元)所以当a=40,x=2时,草皮的费用是21600元【考点】本题考查了列代数式和求代数式的值,解题的关键是明确小路的面积的计算方法5、(1);(2);(3);(4)【解析】【分析】(1)直接运用x2+(p+q)x+pq=(x+p)(x+q)分解因式得出即可;(2)ax2+bx+c(a0)型的式子的因式分解的关键是把二次项系数a分解成两个因数a1,a2的积a1a2,把常数项c分解成两个因数c1,c2的积c1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2);(3)同(2);(4)把()当作一个整体,运用x2+(p+q)x+pq=(x+p)(x+q)分解因式得出即可【详解】(1)(2)(3)(4)【考点】本题主要考查了十字相乘法分解因式;熟练掌握十字相乘法分解因式,正确分解常数项是解题关键