1、人教版八年级数学上册第十五章分式同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方
2、等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟2、已知5x=3,5y=2,则52x3y=()AB1CD3、若关于x的分式方程有增根,则m的值是()A1B1C2D24、若分式的值为零,则的值为()A-3B-1C3D5、下列各式从左到右变形正确的是()A+=3(x+1)+2yB=C=D=6、若分式的值为0,则x的值为A3BC3或D07、若分式在实数范围内有意义,则实数x的取值范围是()Ax2Bx2Cx=2Dx28、(为正整数)的值是()ABCD9、的结果是()ABCD110、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且第卷(非选择题 70分
3、)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、分式方程的解为 _ 3、已知,则代数式的值为_4、观察下列各式:, 根据其中的规律可得_(用含n的式子表示)5、计算_三、解答题(5小题,每小题10分,共计50分)1、已知ab2018,求代数式的值2、解方程:(1)(2)3、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式:;其中是“和谐分式”的是 (填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值 ;(3)在分式运算中,我们也会用到判断和谐分式时所需要的知识,请你用所学知识,化简4、先化简再求值:,其中5、
4、计算:(1)(2)-参考答案-一、单选题1、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键2、D【解析】【详解】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x3y的值为多少即可详解:5x=3,5y=2,52x=32=9,53y=23=8,52x3y=故选D点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌
5、握,解答此题的关键是要明确:底数a0,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么3、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键4、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零
6、的条件5、C【解析】【分析】根据分式的性质逐项分析即可A选项分子分母同时乘以6,B选项分子分母同时乘以100,C选项分子分母同时乘以-1,D选项分子因式分解【详解】A+=, 故该选项不正确,不符合题意;B=, 故该选项不正确,不符合题意;C=,故该选项正确,符合题意;D=,故该选项不正确,不符合题意;故选C【考点】本题考查了分式的性质,掌握分式的性质是解题的关键6、A【解析】【分析】根据分式的值为零的条件可以求出x的值【详解】由分式的值为零的条件得x-3=0,且x+30,解得x=3故选A【考点】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可7、D【
7、解析】【分析】直接利用分式有意义的条件分析得出答案【详解】代数式在实数范围内有意义,x+20,解得:x2,故选D【考点】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键8、B【解析】【分析】根据分式的乘方计算法则解答【详解】故选:B【考点】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键9、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键10、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组
8、,解不等式组即可得到答案【详解】通分得:,x=2-k,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分式方程与不等式的综合应用,解分式方程得到关于k的不等式组是解题关键,注意分式有意义的条件,避免漏解二、填空题1、3【解析】【分析】根据零指数幂和负指数幂的意义计算【详解】解:,故答案为:3【考点】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键2、x=4【解析】【分析】观察可得该分式方程的公分母为(x-2),去分母,转化为整式方程求解注意不要漏乘常数项,结果要检验【详解】解:两边都乘以(x-2),得4-(x-2)=x-2,解得x=4,经检验x=4是原方程的根
9、,所以解为x=4,故答案为:x=4【考点】本题比较容易,考查解分式方程,解分式方程的基本思想是把分式方程转化为整式方程具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根3、#3.5#3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:,移项得,左边提取公因式得,两边同除以2得,原式故答案为:【考点】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键4、【解析】【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,那么第n项的分母
10、是2n+1;分子依次为2,3,10,15,26,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解【详解】解:由分析得,故答案为:【考点】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案5、1【解析】【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可【详解】解:=故答案为:1【考点】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减三、解答题1、4036【解析】【详解】试题分析:根据分式的乘除法,先对
11、分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值.试题解析:原式(ab)(ab)2(ab)ab2 018,原式22 0184 036.2、(1)x=;(2)x=【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1),去分母,得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、(1)分式是和谐分式,
12、故答案为:;(2) (3)【解析】【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到a的值;(3)根据题意和和谐分式的定义可以解答本题【详解】解:(1)分式,不可约分,分式是和谐分式,故答案为:; (2)分式 为和谐分式,且a为整数, 【考点】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答4、,【解析】【分析】利用分式的加减法和乘除法对分式进行计算和化简,再把x2022代入计算即可得出结果【详解】解:当时,原式【考点】本题考查了分式的化简求值,掌握分式的加减法法则和乘除法法则是解题的关键5、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键