1、人教版八年级数学上册第十一章三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一束太阳光线平行照射在放置于地面的正六边形上,若,则的度数为( )ABCD2、下面四个图形中,线段BE能表示
2、三角形ABC的高的是()ABCD3、如图,中,则的度数是()ABCD4、已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为()A7B8C9D105、如图所示,已知G为直角ABC的重心,且,则AGD的面积是()A9cm2B12cm2C18cm2D20cm26、下列长度的三条线段,能组成三角形的是()A4cm,5cm,9cmB8cm,8cm,15cmC5cm,5cm,10cmD6cm,7cm,14cm7、如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D908、如图,ABC中,点D是AB
3、边上的中点,点E是BC边上的中点,若SDABC=12,则图中阴影部分的面积是()A6B4C3D29、能够铺满地面的正多边形组合是()A正三角形和正五边形B正方形和正六边形C正方形和正八边形D正五边形和正十边形10、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_2、如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_3、如图,将三角尺和三角尺 (其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_4、如图,D,E,F分别
4、是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_5、如图,在中,点E是AC的中点,BE、AD交于点F,四边形DCEF的面积的最大值是_三、解答题(5小题,每小题10分,共计50分)1、如图,点M为ABC的边BC的延长线上一点,CN平分ACM,BN平分ABC,且CN与BN相交于点N,求证:A2N2、如图,在ABC中,D为AB边上一点,E为BC边上一点,BCDBDC(1)若ACD15,CAD40,则B 度(直接写出答案);(2)请说明:EAB+AEB2BDC的理由3、如图,已知在中,AD是BC边上的高,AE是的平分线,求证:4、(1)求12边形内角和度数;(2)若一个n边
5、形的内角和与外角和的差是720,求n5、一个零件的形状如图所示,按规定,质检工人测得,就断定这个零件不合格,这是为什么?-参考答案-一、单选题1、A【解析】【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解【详解】解:正六边形的每个内角等于120,每个外角等于60,FAD=120-1=101,ADB=60,ABD=101-60=41光线是平行的,=ABD=,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键2、B【解析】【分析】根据三角形的高的定义(从三角形一个顶点向它的对边作一条垂线,三
6、角形顶点和它对边垂足之间的线段称为三角形这条边上的高)即可得【详解】解:由三角形的高的定义可知,只有选项B中的线段能表示三角形的高,故选:B【考点】本题考查了三角形的高,熟记定义是解题关键3、D【解析】【分析】由三角形的内角和定理求出C的度数,然后由平行线的性质,即可得到答案【详解】解:在中,;故选:D【考点】本题考查了三角形的内角和定理,以及平行线的性质,解题的关键是掌握所学的性质,正确求出角的度数4、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+
7、1,即3x5,x为整数,x的值为4三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围5、A【解析】【分析】由于G为直角ABC的重心,所以BG2GD,ADDC,根据三角形的面积公式可以推出,而ABC的面积根据已知条件可以求出,那么AGD的面积即可求得【详解】解:G为直角ABC的重心,BG2GD,ADDC,而,故选:A【考点】本题主要考查了三角形的重心的性质,解题的关键是根据G为直角ABC的重心,得出BG2GD,ADDC6、B【解析】【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论详解:A、5+4=9
8、,9=9,该三边不能组成三角形,故此选项错误;B、8+8=16,1615,该三边能组成三角形,故此选项正确;C、5+5=10,10=10,该三边不能组成三角形,故此选项错误;D、6+7=13,1314,该三边不能组成三角形,故此选项错误;故选B点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可7、A【解析】【分析】依据AD是BC边上的高,ABC=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到DAE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+
9、ACD=75【详解】AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=75,故选:A【考点】本题考查了角平分线的定义和三角形内角和定理,解决问题的关键是三角形外角性质以及角平分线的定义的运用8、C【解析】【分析】作交AB于点F,作交BC于点G,利用中点的性质即可求出的面积,同理可求出阴影部分面积.【详解】解:作交AB于点F,作交BC于点G,点D是AB边上的中点 点E是BC边上的中点所以阴影部分的面积为3.故选:C.【考点】本题考查了和中点有关的三角形的面积,灵活的利
10、用中点的性质表示三角形的面积间的关系是解题的关键.9、C【解析】【分析】利用正多边形内角度数=180-360边数,计算出正多边形的内角,根据题意能够铺满地面的图形,即是两种或两种以上几何图形镶嵌成平面,围绕一点拼在一起的多边形的内角加在一起恰好组成一个360的周角,据此判断即可【详解】A、正三角形和正五边形内角分别为60、108,由于60m+108n=360,得,显然n取任何正整数时,m不能得正整数,故不能铺满,不符合题意;B、正方形和正六边形内角分别为90、120,90m+120n=360,同理m、n不存在正整数值使之成立,故不能铺满,不符合题意;C、正方形的每个内角为90,正八边形的每个内
11、角为135,90m+135n=360,当m=1,n=2时等式成立,符合题意;D、正五边形和正十边形内角分别为108、144,108m+144n=360,同理m、n不存在正整数值使之成立,故不能铺满地面,不符合题意故选:C【考点】此题主要考查了平面镶嵌,属于基础题,熟练掌握镶嵌的含义是解题的关键10、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键二
12、、填空题1、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键2、72【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的性质得到AFE=BAC+ABE=72【详解
13、】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故答案为72【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键3、105【解析】【分析】利用直角三角形的两个锐角互余求得ABC与FDE的度数,然后在MDB中,利用三角形内角和定理求得DMB,再依据对顶角相等即可求解【详解】解:ABC90C906030,FDE90F904545,DMB180ABCFDE1803045105,CMFDMB105故答案为:105【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶
14、角的性质,正确求得DMB的度数是关键4、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点,、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大5、【解析】【分析】如图,连接CF,设SBFD=a,根据,点E是AC的中点可分别表示出S四边形DCEF与SABC,根据ABAC时SABC最大,即可得答案【详解】解:如图,连接CF,设SBFD=a,点E是AC的中点,SCDF=3SBDF=3a,SBCE=SBAE,SCFE=SAF
15、E,SABF=SCBF=SBDF+SCDF=4a,SABD=SABF+SBDF=5a,SADC=3SABD=15a,SABC=SABD+SADC=20a,SCFE=(SADC-SCDF)=6a,S四边形DCEF=SCDF+SCFE=9a,S四边形DCEF=SABC,AB=6,AC=8,AC边上的高的最大值为6,ABAC时SABC最大,即S四边形DCEF的值最大,S四边形DCEF的最大值=SABC=68=,故答案为:.【考点】本题考查三角形的面积及中线的性质,等高的三角形面积比等于它们的底边的比;三角形的中线把三角形分成两个面积相等的两个三角形;熟练掌握相关性质是解题关键三、解答题1、见解析【解
16、析】【分析】先由角平分线的定义得到,再由三角形外角的性质得到,即可推出,由此即可证明【详解】解:BN,CN分别平分ABC、ACM,【考点】本题主要考查了角平分线的定义,三角形外角的性质,解题的关键在于能够熟知三角形外角的性质和角平分线的定义2、 (1)70(2)见解析【解析】【分析】(1)利用三角形的外角性质可求出BDC的度数,结合BCDBDC可得出BCD的度数,再在BCD中,利用三角形内角和定理可求出B的度数;(2)在ABE中,利用三角形内角和定理可得出EAB+AEB180B,在BCD中,利用三角形内角和定理及BCDBDC可得出2BDC180B,进而可得出EAB+AEB2BDC(1)解:AC
17、D15,CAD40,BDCACD+CAD55,BCDBDC55在BCD中,BDC+BCD+B180,B180555570故答案为:70;(2)解:在ABE中,EAB+AEB+B180,EAB+AEB180B在BCD中,BDC+BCD+B180,BCDBDC,2BDC180B,EAB+AEB2BDC【考点】本题考查了三角形内角和定理以及三角形的外角性质,解题的关键是:(1)利用三角形的外角性质,求出BDC的度数;(2)利用三角形内角和定理,找出EAB+AEB180B及2BDC180B3、证明见解析.【解析】【详解】试题分析:根据三角形内角和定理以及AD是BC边上的高,求得BAD=90-B,再根据
18、AE平分BAC,求得BAE=BAC=(180-B-C)=90-B-C,最后根据DAE=BAE-BAD即可求解试题解析:AD是BC边上的高,BAD=90-BAE平分BAC,BAE=BAC=(180-B-C)=90-B-CDAE=BAE-BAD,DAE=(90-B-C)-(90-B)=B-C=(B-C)4、(1)1800;(2)8【解析】【分析】(1)根据内角和公式,可得答案;(2)根据多边形内角和公式(n-2)180可得内角和,再根据外角和为360可得方程(n-2)180-360=720,再解方程即可【详解】解:(1)由题意,得(12-2)180=1800;(2)由题意得:(n-2)180-360=720,5、见解析【解析】【分析】在五边形DHGFE中利用内角和定理求得GFE的度数即可作出判断【详解】解:四边形ABCD的内角和是:180(42)=360H=360ABC=90五边形DHGFE的内角和是180(52)=540则GFE =540FGH EDHH FED =130因为质检工人测得GFE=140因此这个零件不合格【考点】本题考查了多边形的内角和定理,正确进行角度的计算是关键