1、人教版九年级数学上册第二十五章概率初步专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是()A必然事件B随机事件C不可能亊件D确定事件
2、2、某随机事件发生的概率的值不可能是()ABCD3、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()ABCD4、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A小亮明天的进球率为10%B小亮明天每射球10次必进球1次C小亮明天有可能进球D小亮明天肯定进球5、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()Ap一定等于Bp一定不等于C多投一次,p更接近D投掷次数逐步增加,p稳定在附近6、从-2,0,2,3中随机选
3、一个数,是不等式的解的概率为()ABCD7、下列事件中,是必然事件的是()A晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来B买一张电彩票,座位号是偶数号C在同一年出生的13名学生中,至少有2人出生在同一个月D在标准大气压下,温度低于0时才融化8、下列事件中,属于不可能事件的是()A某投篮高手投篮一次就进球B打开电视机,正在播放世界杯足球比赛C掷一次骰子,向上的一面出现的点数不大于6D在1个标准大气压下,90 的水会沸腾9、如图,在33的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()
4、A1BCD10、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋子里装有12个球,其中有9个红球,2个黑球,1个白球,它们除颜色外都相同,若从袋子中随机摸出1个球,则它是黑球的概率为_2、一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率3、七巧板是我国古代劳动人
5、民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成小虹同学利用七巧板拼成的正方形做“滚小球游戏”,小球可以在拼成的正方形上自由地滚动,并随机地停留在某块板上,如图所示,那么小球最终停留在阴影区域上的概率是_4、如图所示的两个转盘被分别分成了三个和四个面积相等的扇形,并被涂上相应的颜色,固定指针,自由转动两个转盘,当转盘停止转动后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两个指针所指颜色相同的概率是_5、将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为_三、解答题(5小题,每小题10分
6、,共计50分)1、2021年9月7日,湖南永州郡祁学校的一则视频引发热议,视频显示,为教育中学生不要浪费粮食,该校高中部校长王立新站在垃圾桶边当众吃光学生剩饭剩菜这一举动在全国掀起了校园“光盘行动”某校为了让该校学生理解这次活动的重要性,校政教处在某天午餐后,随机调查部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)若政教处准备从九(2)班就餐光盘的2男1女三名学生中随机抽取两人进行菜品调研,问恰巧抽到1男1女的概率为多少?2、某商场举行有奖销售,发行奖券5万张,其中设一等奖2个、二等奖8个、三等奖40个
7、、四等奖200个、五等奖1000个有一位顾客购物后得到一张奖券,问这位顾客:(1)获得一等奖的概率是多少?(2)获奖的概率是多少?3、某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图:(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在扇形统计图中,“篮球”所在扇形的圆心角度数为_度;(3)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修
8、羽毛球的概率是多少?4、第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A云顶滑雪公园、B国家跳台滑雪中心、C国家越野滑雪中心、D国家冬季两项中心小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同(1)小明被分配到D国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率5、某校为了解学生对“A:古诗词,B:国画,C:闽剧,D:书法”等中国传统文化项目的最喜爱情况,在全校范围内随机抽取部分学生进行问卷调查(每人限选一项),并将调
9、查结果绘制成如下不完整的统计图,根据图中的信息解答下列问题:(1)在这次调查中,一共调查了_名学生;扇形统计图中,项目D对应扇形的圆心角为_度;(2)请把折线统计图补充完整;(3)如果该校共有2000名学生,请估计该校最喜爱项目A的学生有多少人?(4)若该校在A,B,C,D四项中任选两项成立课外兴趣小组,请用画树状图或列表的方法求恰好选中项目A和D的概率-参考答案-一、单选题1、B【解析】【分析】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件显然是可能发生的,应为随机事件【详解】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是可能发生,也可能不发生,所以是随机事件故
10、选:B【考点】本题考查了必然事件、随机事件、不可能事件的概念,在一定条件下,一定会发生的事件叫做必然事件,可能发生也可能不发生的叫做随机事件,一定不会发生的叫做不可能事件2、D【解析】【分析】概率取值范围:,随机事件的取值范围是【详解】解:概率取值范围:而必然发生的事件的概率(A),不可能发生事件的概率(A),随机事件的取值范围是观察选项,只有选项符合题意故选:D【考点】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于03、C【解析】【详解】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多
11、少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比4、C【解析】【分析】直接利用概率的意义分析得出答案【详解】解:根据以往比赛数据统计,小亮进球率为10%,
12、他明天将参加一场比赛小亮明天有可能进球故选C【考点】此题主要考查了概率的意义,正确理解概率的意义是解题关键5、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近故选:D【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率注意随机事件可能发生,也可能不发生6、C【解析】【分析】首先确定不等式的解集,然后利用概率公式计算即可【详解】解:解得:,所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是的解的概率为:,故选:C【考点】考查
13、了概率公式的知识,解题的关键是正确的求解不等式,难度不大7、C【解析】【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件进行分析即可【详解】A.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件,故A不符合题意;B.买一张电影票,座位号是偶数号,属于随机事件,故B不符合题意;C.在同一年出生的13名学生中,至少有2人出生在同一个月,属于必然事件,故C符合题意;D.在标准大气压下,温度低于0时冰熔化,属于不可能事件,故D不符合题意故选:C【考点】本题主要考查的是对必然事件的概念的理解,必然事件指在一定条件下一定发生的事件,不确定事件即随机事件是指在一定条件
14、下,可能发生也可能不发生的事件不可能事件是指一定不会发生的事件8、D【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可判断【详解】A、是随机事件,故A选项错误;B、是随机事件,故B选项错误;C、是必然事件,故C选项错误;D、是不可能事件,故D选项正确故选D【考点】本题考查了不可能事件的定义,解题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、D【解析】【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作
15、三角形是等腰三角形,即可得出答案【详解】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=故选D【考点】本题考查概率公式和等腰三角形的判定,解题关键是熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商10、C【解析】【分析】用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率【详解】解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是,故选:C【考点】
16、本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键二、填空题1、【解析】【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:不透明的袋子里装有将12个球,其中2个黑球,任意摸出1个,摸到黑球的概率是故答案为:【考点】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,比较简单2、【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;使用树状图分析时,一定要做到不重不漏(2)根据概率的求法,找准两
17、点:第一点,全部情况的总数;第二点,符合条件的情况数目;二者的比值就是其发生的概率【详解】(1)根据题意,画树状图如下:数字之和为8,9,10,9,10,11,10,11,12由树状图可知,共有9种可能的结果(2) 共有9种可能的结果,其中两次抽出数字之和为奇数(记为事件A)的情况有4种,P(A)=故答案为:【考点】此题考查用列表法或树状图法求概率,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果那么事件A的概率P (A) =3、【解析】【分析】设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可解题【详解】解:设大正方形的边长为2,则GE=1,
18、E到DC的距离d=阴影区域的面积为:大正方形的面积是:小球最终停留在阴影区域上的概率是:【考点】本题考查几何概率,掌握相关知识是解题关键4、【解析】【分析】根据题意画出列表可得所有等可能的结果,进而可得两个指针指向区域的颜色相同的概率【详解】列举出所有可能的结果转盘2转盘1红1黄红2蓝红(红1,红)(黄,红)(红2,红)(蓝,红)黄(红1,黄)(黄,黄)(红2,黄)(蓝,黄)蓝(红1,蓝)(黄,蓝)(红2,蓝)(蓝,蓝)共有12种等可能的结果,其中颜色相同的有4种结果,颜色相同的概率故答案为【考点】本题考查了列表法与树状图,解决本题的关键是掌握概率公式5、【解析】【分析】使用简单事件概率求解公
19、式即可:事件发生总数比总事件总数【详解】掷骰子一次共可能出现6种情况,分别是向上点数是:1、2、3、4、5、6,点数1向上只有一种情况,则朝上一面点数是1的概率P=故答案为:【考点】本题考查了简单事件概率求解,熟练掌握简单事件概率求解的公式是解题的关键三、解答题1、 (1)100(2)见解析(3)【解析】【分析】(1)利用光盘的人数除以光盘的人数所占的百分比,即可求解;(2)求出剩少量的人数,即可求解;(3)根据题意,画出树状图,得到共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,再利用概率公式即可求解(1)解:这次被调查的同学共有4040%100(名),故答案为:100;(2
20、)解:剩少量的人数是;10040251520(名),把条形统计图补充完整如下;(3)解:画树状图如图:共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,抽到的两名学生恰为1男1女的概率为【考点】本题主要考查了扇形统计图和条形统计图,利用树状图或列表法求概率,明确题意,从统计图中获取准确信息是解题的关键2、(1)获得一等奖的概率是;(2)获奖的概率为【解析】【分析】(1)用一等奖项的名额除以奖券总数量即可解答;(2)用获奖项的名额除以总设奖数即可解答【详解】(1)发行奖券5万张,其中设一等奖2个,获得一等奖的概率是;(2)发行奖券5万张,其中设一等奖2个、二等奖8个、三等奖40个、
21、四等奖200个、五等奖1000个获奖的概率为【考点】本题考查了概率,熟练运用概率公式是解题的关键3、 (1)50人,见解析(2)122.4(3)见解析,【解析】【分析】(1)由排球有12人,占24%,即可求得该班的总人数,继而求得足球的人数,即可补全条形统计图;(2)根据“篮球”所在扇形的圆心角度数=360篮球所占百分比即可解答;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好1人选修排球,1人选修羽毛球的情况,再利用概率公式即可求得答案(1)解:该班的总人数为1224%50(人),足球科目人数为5014%7(人),补全图形如下:(2)“篮球”所在扇形的圆心角度数
22、=;(3)设选修排球的记为A,选修羽毛球记为和,选修乒乓球记为C画树状图为:共有12种等可能的结果,其中恰好有1人选修排球、1人选修羽毛球的占4种,所以.【考点】本题考查了统计与概率,涉及了、条形统计图、扇形统计图,列表法与树状图法看懂图中数据是解题关键,解题的难点是利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率4、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可(1)解:小明被分配到D国家冬季两
23、项中心场馆做志愿者的概率是;(2)解:画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,小明和小颖被分配到同一场馆做志愿者的概率为【考点】此题考查了用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比5、 (1)200,9(2)见解析(3)800人(4)【解析】【分析】(1)根据折线统计图中C的人数和扇形统计图中C所占的百分比,求出总数;(2)分别求出A,B的人数,再补全统计图;(3)用总人数乘以喜爱项目A的占比即可;(4)用树状图列出所有等可能情况,再根据题意求得概率(
24、1)解:C组调查了30人,占15%,因此总共调查了200(人),D组调查了50人,占比50200=,因此项目D对应的扇形的圆心角是故答案为:200,90(2)解:根据所占的百分比和总人数得:(人),的人数为:(人)如图所示(3)解:(人)该校最喜爱项目A的学生约有800人(4)解:画树状图如下:由树状图可知,共有12种等可能的情况,其中恰好选中项目和的结果有2种(恰好选中项目和)【考点】本题考查的是折线统计图和扇形统计图的综合运用,用列表法或画树状图法求概率;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比,能对图表信息进行具体分析和熟练掌握概率公式是解题的关键