收藏 分享(赏)

基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx

上传人:a**** 文档编号:958370 上传时间:2025-12-19 格式:DOCX 页数:20 大小:398.02KB
下载 相关 举报
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第1页
第1页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第2页
第2页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第3页
第3页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第4页
第4页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第5页
第5页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第6页
第6页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第7页
第7页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第8页
第8页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第9页
第9页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第10页
第10页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第11页
第11页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第12页
第12页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第13页
第13页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第14页
第14页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第15页
第15页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第16页
第16页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第17页
第17页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第18页
第18页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第19页
第19页 / 共20页
基础强化人教版九年级数学上册第二十五章概率初步专项训练试题(含答案解析).docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十五章概率初步专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从,0,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD2、下列说法错误的是()A袋中装有

2、一个红球和两个白球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,充分摇动后,再从中随机摸出一个球,两次摸到不同颜色的球的概率是B甲、乙、丙三人玩“石头、剪刀、布”的游戏,游戏规则是如果甲、乙两人的手势相同,那么丙获胜,如果甲、乙两人的手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者这个游戏规则对甲、乙、丙三人是公平的C连续抛两枚质地均匀的硬币,“两枚正面朝上”“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的

3、,抽签的先后不影响公平3、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A小亮明天的进球率为10%B小亮明天每射球10次必进球1次C小亮明天有可能进球D小亮明天肯定进球4、一个不透明的袋中装有8个黄球,个红球,个白球,每个球除颜色外都相同任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一定正确的是()ABCD5、两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A抛一枚硬币,正面朝上的概率B掷一枚正六面体的骰子,出现点的概率C转动如图所示的转盘,转到数

4、字为奇数的概率D从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率6、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()ABCD7、如图,在44的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()ABCD8、小丽准备通过爱心热线捐款,她只记得号码的前 位,后三位由 , 这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是()ABCD9、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随

5、机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是()A B CD 10、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为( )A12个B9个C6个D3个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红黄蓝”的概率是_2、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,

6、通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为_3、一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球_个4、今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程:每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组别;再从写有“引体向上”“立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是_5、某产品生产企业开

7、展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖若从其中一箱中随机抽取1件产品,则能中奖的概率是_(用最简分数表示)三、解答题(5小题,每小题10分,共计50分)1、小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:向上点数123456出现次数79682010(1)计算“2点朝上”的频率和“5点朝上”的频率(2)小军说:“根据实验,一次实验中出现3点朝上的概率是”;小军的这一说法正确吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次”小刚的这一说法正确吗?为什么?2、第24届北京冬奥会的开

8、幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义(1)请问随机抽取一张卡片,上面写有“立春”的概率为 ;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率3、为响应国家“双减“政策,增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项

9、目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和喇形统计图(均不完整)(1)在这次问要调查中,一共抽查了_名学生;(2)补全频数分布直方图,求出扇形统计图中体操项目所对应的圆心角度数;(3)估计该校1200名学生中有多少名喜爱跑步项目;(4)球类教练在制定训练计划前,将从最喜欢球类项目的甲、乙、丙、丁四名同学中任选两人进行个別座谈,请用列表法或两树状图法求抽取的两人恰好是甲和乙的概率4、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验将球搅匀后从中随机摸出

10、一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1)(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 (3)试估算口袋中黑、白两种颜色的球有多少只5、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一

11、个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率-参考答案-一、单选题1、C【解析】【详解】在 这5个数中只有0、3.14和6为有理数,从这5个数中随机抽取一个数,抽到有理数的概率是故选C2、C【解析】【分析】利用列表法或树状图法分别计算出所求的概率,即可得答案【详解】A.两次摸球所有可能出现的结果,用表列举如下:有9种等可能的结果,两次摸球颜色不同有4种,两次摸球颜色不同的概率为故该选项正确;B.甲获胜的概率为,乙获胜的概率为,

12、丙获胜的概率也为,所以这个游戏规则对三人是公平的故该选项正确;C.设正面朝上为A,反面朝上为B,画树状图如下:P(两枚正面朝上)(两枚反面朝上),P(枚正面朝上,一枚反面朝上)故该选项错误;D.等可能事件,每人抽签获奖的概率均为故该选项正确,故选C【考点】本题考查了概率的意义、游戏的公平性;概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键3、C【解析】【分析】直接利用概率的意义分析得出答案【详解】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球故选C【考点】此题主要考查了概率的意义,正确理解概率的意义是解题关键4、C【解析】【分析】先根据概率公式得

13、出:任意摸出一个球,是黄球的概率与不是黄球的概率(用含m、n的代数式表示),然后由这两个概率相同可得m与n的关系【详解】解:一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,是黄球的概率与不是黄球的概率相同,m+n8故选:C【考点】此题考查了概率公式的应用,属于基础题型,解题时注意掌握概率=所求情况数与总情况数之比5、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出

14、现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意故选:D【考点】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键6、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解【详解】1211+1=21+2=322+1=32+2=4从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是,故选:C【考点】本题考查了利用

15、列表法或树状图法求概率,正确地列出表格或树状图是解题的关键注意:从中任意摸出一张,放回搅匀后再任意摸出一张7、B【解析】【分析】由在44正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案【详解】解:由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,概率为:;故选:B【考点】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=8、D【解析】【分析】首先根据题意可得:可能的结果有:502,

16、520,052,025,250,205;然后利用概率公式求解即可求得答案【详解】解:她只记得号码的前5位,后三位由5,0,2,这三个数字组成,可能的结果有:502,520,052,025,250,205;他第一次就拨通电话的概率是:故选:D【考点】此题考查了列举法求概率的知识注意概率所求情况数与总情况数之比9、A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【考点】此题考查的是用列

17、表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验10、A【解析】【详解】解:口袋中装有4个黑球且摸到黑球的概率为,口袋中球的总数为:4=12(个)故选A二、填空题1、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为故答案为:【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知

18、识点为:概率等于所求情况数与总情况数之比2、30【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在20%左右得到比例关系,列出方程求解即可【详解】由题意可得,100%20%,解得,a30故答案为30【考点】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系3、3.【解析】【详解】解:设绿球的个数为x,根据题意,得:=0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个,故答案为34、 【解析】【详解】试题解析:分别用D,E,F表示“引体向上”立定跳远”“800米”,画树状图得:共有9

19、种等可能的结果,小明抽到A组“引体向上”的概率=.故答案为:点睛:列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比5、【解析】【分析】根据题意计算中奖概率即可;【详解】解:每一箱都有6件产品,且每箱中都有2件能中奖,P(从其中一箱中随机抽取1件产品中奖)=,故答案为:【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键三、解答题1、解:(1)2点朝上出现的频率为;5点朝上的概率为;(2)小军的说法不正确,(3)小刚的说法是不正确的【解析】【分析】(1)直接利用概率公式

20、计算即可;(2)利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可;(3)利用随机事件发生的概率的意义直接回答即可确定答案【详解】(1)2点朝上出现的频率=;5点朝上的概率=;(2)小军的说法不正确,因为3点朝上的概率为,不能说明3点朝上这一事件发生的概率就是,只有当实验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近,才可以将这个频率的稳定值作为该事件发生的概率(3)小刚的说法是不正确的,因为不确定事件发生具有随机性,所以6点朝上出现的次数不一定是100次【考点】本题考查了利用频率估计概率的知识,解题的关键是了解“大量重复试验下事件发生的频率可以估计该事件发生的概

21、率”,难度一般2、 (1);(2) 【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解: 共有24张卡片,其中写有“立春”的卡片数为1, 抽取到写有“立春”的概率为;(2)解:立春雨水惊蛰春分清明谷雨立春(立春,雨水)(立春,惊蛰)(立春,春分)(立春,清明)(立春,谷雨)雨水(雨水,立春)(雨水,惊蛰)(雨水,春分)(雨水,清明)(雨水,谷雨)惊蛰(惊蛰,立春)(惊蛰,雨水)(惊蛰,春分)(惊蛰,清明)(惊蛰,

22、谷雨)春分(春分,立春)(春分,雨水)(春分,惊蛰)(春分,清明)(春分,谷雨)清明(清明,立春)(清明,雨水)(清明,惊蛰)(清明,春分)(清明,谷雨)谷雨(谷雨,立春)(谷雨,雨水)(谷雨,惊蛰)(谷雨,春分)(谷雨,清明) 共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分); 两人抽到的卡片上写有相同的字的概率为:P(抽到相同字)=【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率3、 (1)

23、80(2)见解析,45(3)150名(4)【解析】【分析】(1)根据其他的人数和所占的百分比可以求得本次调查的人数;(2)根据(1)中的结果可以求得喜爱游泳人数,从而可以条形统计图补充完整,并求得扇形统计图中“体操”所对应的圆心角度数;(3)根据统计图中的数据可以求得该校1200名学生中有多少人喜爱跑步项目;(4)根据题目条件列出树状图,并根据概率公式求解即可(1)解:,即在这次问卷调查中,一共抽查了80名学生;(2)解:喜爱游泳的学生有(名);补全的频数分布直方图如图1所示:扇形统计图中体操项目所对应的圆心角度数是;(3)解:(名),故估计该校1200名学生中有150名喜爱跑步项目;(4)解

24、:画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2种,所以抽取的两人恰好是甲和乙的概率为【考点】本题考查条形统计图、扇形统计图、用样本估计总体,列树状图求概率,解答本题的关键是明确题意,利用数形结合的思想解答4、(1)0.6;(2),;(3)12,8【解析】【详解】试题分析:(1)本题需先根据表中的数据,估计出摸到白球的频率(2)本题根据摸到白球的频率即可求出摸到白球和黑球的概率(3)根据口袋中黑、白两种颜色的球的概率即可求出口袋中黑、白两种颜色的球有多少只试题解析:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.6;(2)因为当n很大时,摸到白球的频率将会接近0.6;所以摸到白球的概率是;摸到黑球的概率是(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球有白球是个,黑球是个5、【解析】【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【考点】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1