1、人教版九年级数学上册第二十二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,42、下列函数中,二次函
2、数是()Ay4x+5Byx(2x3)Cyax2+bx+cD3、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比例函数关系D反比例函数关系,一次函数关系4、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD5、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移
3、1个单位长度,所得抛物线对应的函数表达式为()ABCD6、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD7、抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m48、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD9、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定10、抛物线y=(x2)21可以
4、由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:当时,函数图象的对称轴是轴;当时,函数图象过原点;当时,函数有最小值;如果,当时,随的增大而减小,其中所有正确结论的序号是_2、某商场经营一种小商品,已知购进时单价是20元调查发现:当销售单价是30元时,月销售量
5、为280件而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为_元3、二次函数的最小值为_4、已知三角形的一边长为x,这条边上的高为x的2倍少1,则三角形的面积y与x之间的关系为_5、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元三、解答题(5小题,每小题10分,共计50分)1、某服装店以每件3
6、0元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?2、某工艺厂设计了一款成本为每件元的产品,并投放市场进行试销,经过调查,发现每天的销售数量件与销售单价(元)存在一次函数关系(1)要使每天销售利润达到元,销售单价应定为每件多少元?(2)销售单价定为多少时,该厂每天获取的利润最大?最大利润是多少
7、?3、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?4、如图,抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)(1)求抛物线的解析式;(2)直线ykx+m(k0)过点B,且与抛物线交于另一点D(点D与点A不重合
8、),交y轴于点C过点D作DEx轴于点E,连接AB,CE若k1,求CDE的面积;求证:CEAB5、综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=x2+x+4抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点(1)求A、B两点的坐标及直线l的函数表达式(2)将抛物线W沿x轴向右平移得到抛物线W,设抛物线W的对称轴与直线l交于点F,当ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W的函数表达式(3)如图2,连接AC,CB,将ACD沿x轴向右平移m个单位(0m5),得到ACD设AC交直线l于点M,CD交CB于
9、点N,连接CC,MN求四边形CMNC的面积(用含m的代数式表示)-参考答案-一、单选题1、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键2、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c不是二次函数,故选项C不合题意;D、不是
10、二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键3、A【解析】【分析】根据题意求得y和S与x的函数关系式,然后由函数关系式可直接进行判别即可【详解】解:由题意可知:,则,即,y与x满足一次函数关系菜园的面积:,S与x满足二次函数的关系故选A【考点】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键4、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=B
11、F=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键5、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-
12、2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键6、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可【详解】解:抛物线yax2bxc过点A(4,0),对称轴为直线x1,因此有:x1,即2ab0,因此选项D符合题意;当x1时,yabc的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x1时,yabc0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2
13、4ac0,故选项C不符合题意;故选:D【考点】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提7、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-或-,即可解答【详解】把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,
14、0|2()|100,当x=-2时,二次函数有最小值-4,故答案为:-4【考点】此题考查将二次函数一般式化为顶点式,函数的性质,熟练转化函数解析式的形式及掌握确定最值的方法是解题的关键4、y=x2 x【解析】【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可.【详解】由题意得.故答案为.【考点】此题主要考查了根据几何问题列二次函数关系式,熟记三角形面积公式是解题关键.5、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利
15、润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点三、解答题1、(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【解析】【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案【详解】(1)由题意列方程得:(x40-30) (300-10x)3360 解得:x12,x218要尽可能减少库存,x218不合题意,故
16、舍去T恤的销售单价应提高2元;(2)设利润为M元,由题意可得: M(x40-30)(300-10x)-10x2200x3000 当x10时,M最大值4000元销售单价:401050元当服装店将销售单价50元时,得到最大利润是4000元【考点】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解2、(1)要使每天销售利润达到元,销售单价应定为每件元或元;(2)销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【解析】【分析】(1)根据利润(售价-进价)销量,列方程即可解答(2)设每天的销售利润为元,根据题意可以列出利润与销售单价之间的函数
17、关系式,然后根据二次函数的性质,即可解答【详解】(1)由题意得解得:或答:要使每天销售利润达到元,销售单价应定为每件元或元.(2)设每天的销售利润为元,由题意得当时,即销售单价为元时,取最大值答:销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【考点】本题考查了二次函数的应用,解题关键是明确题意,结合二次函数的性质解答3、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根
18、据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是245
19、0元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题4、(1)y=x2-4x;(2);见解析【解析】【分析】(1)先求出A点的坐标,然后用待定系数法求解即可;(2)先求出直线BD的解析式,然后得到D点的坐标,由此求解即可;过点B作BFx轴于F,则AFB=COE=90,由(1)得A(4,0),B(2,-4),则AF=2,BF=4,联立得,求得,从而可以得到,即可证明AFBEOC,得到FAB=OEC,由此即可证明【详解】解:(1)抛物线yax2+bx(a0,b0)交x轴于O,A两
20、点,顶点为B(2,4)抛物线的对称轴为,A(4,0),解得,抛物线的解析式为:;(2)当k=1时,直线的解析式为,直线经过B(2,-4),直线的解析式为,解得或(舍去)D(3,-3),DE=3,OE=3,;如图,过点B作BFx轴于F,AFB=COE=90,由(1)得A(4,0),B(2,-4),F(2,0),AF=2,BF=4,联立得,OE=,C是直线与y轴的交点,C(0,m),OC=-m,AFBEOC,FAB=OEC,AB/CE【考点】本题主要考查了一次函数和二次函数的综合,待定系数法求函数解析式,相似三角形的性质与判定,平行线的判定,一元二次方程根与系数的关系等等,解题的关键在于能够熟练掌
21、握相关知识进行求解5、(1)点A坐标为(3,0),点B的坐标为(7,0),y=2x+4;(2) 点F的坐标为(5,6),y=x2+x;(3) 四边形CMNC的面积为m2【解析】【分析】根据抛物线的解析式,令y0即可求出两点的坐标根据抛物线的解析式可分别求出C,D两点的坐标,再用待定系数法即可求出直线的表达式根据题意,利用角的等量关系可以得到13,进而得到tan1tan3,根据三角函数的计算方法列出等式,根据一次函数的解析式设点的坐标为(xF,2xF4),将各线段的长度代入等式即可求出点F的坐标,再根据平移的法则即可求出w的表达式根据平移,可以得到点C,A,D的坐标,再根据待定系数法可以得到直线
22、AC,BC,CD的解析式,根据交点的计算方法列方程组可以求得点M,N的坐标,根据平移的定义和平行四边形的定义可知四边形CMNC是平行四边形,再根据平行四边形面积的计算方法可以得到平行四边形CMNC的面积【详解】(1)当y0时,x240,解得x13,x27,点A坐标为(3,0),点B的坐标为(7,0)抛物线w的对称轴为直线x2,点D坐标为(2,0)当x0时,y4,点C的坐标为(0,4)设直线l的表达式为ykxb,解得直线l的解析式为y2x4;(2)抛物线w向右平移,只有一种情况符合要求,即FAC90,如图此时抛物线w的对称轴与x轴的交点为G,12902390,13,tan1tan3,=设点F的坐标为(xF,2xF4), ,解得xF5,2xF46,点F的坐标为(5,6),此时抛物线w的函数表达式为yx2x;(3)由平移可得:点C,点A,点D的坐标分别为C(m,4),A(3m,0),D(2m,0),CCx轴,CDCD,可用待定系数法求得直线AC的表达式为yx4m,直线BC的表达式为yx4,直线CD的表达式为y2x2m4,分别解方程组和 解得和点M的坐标为(m,m4),点N的坐标为(m, m4),yMyNMNx轴,CCx轴,CCMNCDCD,四边形CMNC是平行四边形,Sm4(m4)m2【考点】本题主要考查二次函数的图象与性质、一次函数的解析式以及二次函数的应用,数形结合思想是关键