1、人教版九年级数学上册第二十三章旋转难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x
2、 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)2、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD3、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A15或45B15或45或90C45或90或135D15或45或90或1354、如图,OAB中,AOB=60,OA=4,点B的坐
3、标为(6,0),将OAB绕点A逆时针旋转得到CAD,当点O的对应点C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)5、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD6、如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,则为()ABCD7、如图,在正方形ABCD中,将边BC绕点B逆时针旋转至,连接,若,则线段BC的长度为()A4B5CD8、下面四个手机应用图标中是轴对称图形的是()ABCD9、如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB延长线上,连接AD下列结论一定正确
4、的是()AABDEBCBECCADBCDADBC10、将矩形绕点顺时针旋转,得到矩形当时,下列针对值的说法正确的是()A或B或CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_2、如图,将绕点O逆时针旋转后得到,若恰好经过点A,且,则的度数为_3、将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则_.(结果保留根号)4、若点与点关于原点成中心对称,则_5、如图,在直角坐标系中,ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0)将AB
5、C绕某点顺时针旋转90得到DEF,则旋转中心的坐标是_三、解答题(5小题,每小题10分,共计50分)1、在85的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0)仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90,画出对应线段CD,并写出点D的坐标;(2)在线段AB上画点E,使BCE45(保留画图过程的痕迹)2、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出3、已知和都是等
6、腰直角三角形,(1)如图1,连接,求证:;(2)将绕点O顺时针旋转如图2,当点M恰好在边上时,求证:;当点A,M,N在同一条直线上时,若,请直接写出线段的长4、在平面直角坐标系中,四边形是矩形,点,点,点以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为(1)如图,当时,求点的坐标;(2)如图,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可)5、小明在一次数学活动中,进行了如下的探究活动:如图,在矩形ABCD中,AB=8,AD=6,以点B为中心,顺时针旋转矩形ABCD,得到矩形BEFG,点A、D、C的对应点分别为E、F、G(1)如图1,当
7、点E落在CD边上时,求DE的长;(2)如图2,当点E落在线段DF上时,BE与CD交于点H求证:ABDEBD;求DH的长(3)如图3,若矩形ABCD对角线ACBD相交于点P,连接PE、PF,记PEF面积为S,请直接写出S的最值-参考答案-一、单选题1、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,
8、AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键2、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得
9、抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键3、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=120,=120-30-45=45,若BDAC,则ACB=CBD=90,=90,当点C,点B,点E共
10、线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DEF旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键4、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=3,OE=OC+CE=4+3=7,D(7,3),故
11、选:A【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质5、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题
12、考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质6、B【解析】【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可【详解】,由旋转可知,故答案选:B【考点】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键7、D【解析】【分析】根据旋转的性质,可知BCBC取点O为线段CC的中点,并连接BO根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得RtOBC RtCCD,从而证得OCCD,BOC C,再利用勾股定理即可求解【详解】解:如
13、图,取点O为线段CC的中点,并连接BO依题意得,BCBCBOC CBOC90在正方形ABCD中,BCCD,BCD90OCBCCD90又C CD 90CDCCCD90OCBCDC在RtOBC和RtCCD中RtOBC RtCCD(AAS)OCCD2C C2 OC 224BOC C4在RtBOC中BC故选:D【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加8、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项
14、错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【考点】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键9、C【解析】【详解】根据旋转的性质得,ABDCBE=60,EC,AB=BD,则ABD为等边三角形,即 ADAB=BD,ADB=60因为ABDCBE=60,则CBD=60,所以ADB=CBD,ADBC.故选C.10、A【解析】【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60
15、,即可得到旋转角的度数【详解】如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GC=GB,GHBC,四边形ABHM是矩形,AM=BH=,GM垂直平分AD,GD=GA=DA,ADG是等边三角形,DAG=60,旋转角=60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG=60,旋转角=360-60=300,故选:A【考点】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角二、填空题1、2【解析】【分析】根据中心对称的性质AD=DE及D=90,由勾股定理即可求得A
16、E的长【详解】DEC与ABC关于点C成中心对称,ABCDEC,ABDE2,ACDC1,DBAC90,AD2,D90,AE,故答案为【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用2、45#45度【解析】【分析】由旋转的性质得出OA=OC,D=B,AOC=DOB=30,从而得到C=OAC=75,再求出AOD=30,由三角形的外角性质求出D,即可【详解】解:由旋转的性质得:OA=OC,D=B,AOC=DOB=30,C=OAC=(180-30)2=75,OCOB,COB=90,AOD=90-30-30=30,D=OAC-AOD=75-30=45,B=45故答案为:45【考点】
17、本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理;熟练掌握旋转的性质,并能进行推理计算是解决问题的关键3、【解析】【分析】先根据正方形的性质得到CD=1,CDA=90,再利用旋转的性质得CF=,根据正方形的性质得CFE=45,则可判断DFH为等腰直角三角形,从而计算CF-CD即可【详解】四边形ABCD为正方形,CD=1,CDA=90,边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,CF=,CFDE=45,DFH为等腰直角三角形,DH=DF=CF-CD=-1故答案为-1【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连
18、线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质4、【解析】【分析】根据关于原点对称的点的特征求出的值,计算即可【详解】解:点与点关于原点成中心对称,故答案为:【考点】本题考查了关于原点对称,熟知关于原点对称的点横纵坐标均互为相反数是解题的关键5、(1,-1)【解析】【分析】由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标【详解】解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P点P的坐标为(1,-1)故答案为:(1,-1)【考点】本题考查坐标与图形变化旋
19、转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30,45,60,90,180三、解答题1、 (1)图见解析,点D坐标为(1,3)(2)见解析【解析】【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出CD=BC,以BD为对角线作矩形MBND,连接MN交BD于G,延长CG交AB于E,则点E即为所求;(1)解:如图,CD即为所求线段,点D坐标为(1,3);(2)解:如图,点E即为所求作的点【考点】本题考查了坐标与图形变换,旋转等知识,掌握点的坐标特征及旋转的特征是解本题的关键2、(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,然后描点即
20、可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键3、 (1)见解析;(2)见解析;或【解析】【分析】(1)证明AMOBNO即可;(2)连接BN,证明AMOBNO,得到A=OBN=45,进而得到MBN=90,且OMN为等腰直角三角形,再在BNM中使用勾股定理即可证明;分两种情况分别画出图形即可求解【详解】解:(1)和都是等腰直角三角形,又,,,;(2)连接BN,如下图所示:,且,且为等腰直角三角形,在中,由勾股定理可知:,且;分类讨论:情况一:如下图2所示,设AO与NB交于
21、点C,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;情况二:如下图3所示,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;故或【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型4、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为【解析】【分析】(1) 过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2) 过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3
22、) 连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.【详解】解:(1)过点作轴于,如图所示:点,点,以点为中心,顺时针旋转矩形,得到矩形,在中,点的坐标为;(2)过点作轴于于,如图所示:则,点的坐标为;(3)连接,作轴于G,如图所示:由旋转的性质得:, ,在和中,点的坐标为【考点】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.5、 (1)DE的长为8-2;(2)见解析;DH=;(3)9S39【解析】【分析】(1)由旋转性质知BA=BE=8,由矩形性质
23、知BC=AD=6,再在RtBCE中根据勾股定理可得;(2)利用旋转的性质可得:A=BEF=90,AB=BE,由“HL”可证ADBEDB;由全等三角形的性质和平行线的性质可得BDC=EBD,可得BH=DH,由勾股定理可求DH的值;(3)由勾股定理可求BD的值,可得BP=5,当点E在线段BD上时,PEF面积有最小值,当点E在线段DB延长线上时,PEF面积有最大值(1)解:由旋转的性质知BA=BE=8,四边形ABCD是矩形,AD=BC=6,C=90,CE=2;DE=CD-CE=8-2;(2)证明:由旋转知:A=BEF=90,AB=BE,BEF=90,BED=90,又BD=BD,RtABDRtEBD(
24、HL);解:设DH=x,由知ABDEBD,ABD=EBD,又在矩形ABCD中,有 ABCD,BDC=ABD,BDC=EBD,BH=DH,在RtBCH中,由勾股定理得:(8-x)2+62=x2,x=,即DH=;(3)解:四边形ABCD是矩形,AB=8,AD=BC=6,BP=DP=AP=CP,BD=10,BP=5,EF=AD=6,如图,EF始终在以B为圆心,BE为半径的圆上,PEF的底EF是定值为6,当高最小或最大时,PEF的面积就存在最小值或最大值,当点E在线段BD上时,此时PE最短,则PEF面积有最小值;当点E在DB延长线上时,此时PE最长,则PEF面积有最大值;分情况讨论:当点E在线段BD上时,PEF面积有最小值,SPEF=6(8-5)=9;当点E在线段DB延长线上时,PEF面积有最大值SPEF=6(8+5)=399S39【考点】本题是四边形的综合题,主要考查矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题