1、人教版九年级数学上册第二十三章旋转难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,
2、斜边DE交AC边于点F,则图中阴影部分的面积为()A3B1CD2、以原点为中心,将点P(4,5)按逆时针方向旋转90,得到的点Q所在的象限为()A第一象限B第二象限C第三象限D第四象限3、如图,将绕点逆时针旋转得到,若且于点,则的度数为()ABCD4、下列命题是真命题的是()A一个角的补角一定大于这个角B平行于同一条直线的两条直线平行C等边三角形是中心对称图形D旋转改变图形的形状和大小5、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,
3、B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)6、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD7、下列图形中,是中心对称图形的是()ABCD8、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD9、下列所述图形中,既是轴对称图形又是中心对称图形的是()A等腰三角形B等边三角形C菱形D平行四边形10、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中
4、心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点与点关于原点对称,则_;2、如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且,以AB为边构造菱形ABEF(点E在x轴正半轴上),将菱形ABEF与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90,则第27次旋转结束时,点的坐标为_3、如图,在RtABC,B90,ACB50将RtABC在平面内绕点A逆时针旋转到ABC的位置,连接CC若ABCC,则旋转角的度数为_4、将图1剪成若干小块,再图2中进行拼接平移后能够得到、中
5、的_5、如图,在平面直角坐标系中,点P(1,1),N(2,0),MNP和M1N1P1的顶点都在格点上,MNP与M1N1P1是关于某一点中心对称,则对称中心的坐标为_.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形中,M是其内一点,将绕点B顺时针旋转至,连接、,延长交与点E,交与点G(1)在图中找到与相等的线段,并证明(2)求证:E是线段的中点2、如图,直线与x轴、y轴分别交于A、B两点,把ABC绕点A顺时针旋转90后得到,求点的坐标?3、为等边三角形,AB8,ADBC于点D,E为线段AD上一点,以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点(1)如图1,
6、EF与AC交于点G,连接NG,BE,直接写出NG与BE的数量关系;(2)如图2,将绕点A逆时针旋转,旋转角为,M为线段EF的中点,连接DN,MN当时,猜想DNM的大小是否为定值,如果是定值,请写出DNM的度数并证明,如果不是,请说明理由;(3)连接BN,在绕点A逆时针旋转过程中,请直接写出线段BN的最大值4、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明5、问题原型:如图,在等腰直角三角形ABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90
7、得到线段BD,连结CD过点D作BCD的BC边上的高DE,易证ABCBDE,从而得到BCD的面积为 初步探究:如图,在RtABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD用含a的代数式表示BCD的面积,并说明理由简单应用:如图,在等腰三角形ABC中,AB=AC,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD直接写出BCD的面积(用含a的代数式表示)-参考答案-一、单选题1、D【解析】【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋
8、转,是等边三角形,阴影部分的面积为故选D【考点】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键2、B【解析】【分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90,即可得到点Q所在的象限【详解】解:如图,点P(4,5)按逆时针方向旋转90,得点Q所在的象限为第二象限故选:B【考点】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质3、C【解析】【分析】由旋转的性质可得BAD=55,E=ACB=70,由直角三角形的性质可得DAC=20,即可求解【详解】解:将ABC绕点A逆时针旋转55得A
9、DE,BAD=55,E=ACB=70,ADBC,DAC=20,BAC=BAD+DAC=75故选C【考点】本题考查了旋转的性质,掌握旋转的性质是本题的关键4、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判
10、断5、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识
11、,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键6、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量7、C【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项不合题意;B、不
12、是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意故选:C【考点】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=
13、AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=90,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键9、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称
14、图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误故选C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键二、填空题1、-1【解析】【分析】
15、平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),可据此求出m、n的值【详解】点与点关于坐标系原点对称,m-2n=-4,3m=-6解得:m=-2,n=1故m+n=-2+1=-1故答案为-1.【考点】本题考查了关于原点对称的点坐标的关系,是需要识记的基本问题2、(2,-2)【解析】【分析】先求出点F坐标,由题意可得每8次旋转一个循环,即可求解【详解】解:点B(2,0),OB=2,OA=2,AB=OA=2,四边形ABEF是菱形,AF=AB=2,点F(2,2),由题意可得每4次旋转一个循环,274=63,点F27的坐标与点F3的坐标一样,在第四象限,如下图,过F3作F3Hy轴,
16、F3Hy轴,AFy轴,OAF=F3HO=90,AOF+HOF3=90,OFOF3,AOF+AFO=90,AFO=HOF3,OAFF3HO,HF3=OA=2,OH=AF=2,F3(2,-2),点F27的坐标(2,-2),故答案为:(2,-2)【考点】本题考查了菱形的性质,全等三角形的性质与判定及旋转的性质,找到旋转的规律是本题的关键3、100【解析】【分析】由,可得,由旋转的性质可得,由三角形内角和定理得,计算求解即可【详解】解:由旋转的性质可得故答案为:100【考点】本题考查了平行的性质,旋转的性质,旋转角,等边对等角,三角形的内角和定理等知识解题的关键在于找出旋转角4、#【解析】【详解】解:
17、根据图形1可得剪成若干小块,再图2中进行拼接平移后能够得到、,不能拼成,故答案为:5、(2,1)【解析】【分析】观察图形,根据中心对称的性质即可解答.【详解】点P(1,1),N(2,0),由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,对称中心的坐标为(2,1),故答案为(2,1)【考点】本题考查了中心对称的性质:关于中心对称的两个图形能够完全重合; 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分三、解答题1、 (1),证明见解析(2)证明见解析【解析】【分析】(1)根据旋转
18、的性质得出BM=BN,MBN=,再根据同角的余角相等可得ABM=CBN,进而得出,(2)作辅助线,过A作APBG,证明和,可得E为AN中点(1)证明:BM绕B顺时针旋转得BNBM=BN,MBN=正方形ABCDAB=BC,ABC=ABM+MBCMBN=MBC+CBNABM=CBN在中 (SAS)AM=CN(2)证明:如图,过A作APBGAPB=CMBCBM+ABM=ABM+PABCBM=PAB在中 (AAS)AP=BM由(1)知,BM=BN,MBN=AP=BN,APE=EBN=PEA=BEN(AAS)AE=ENE为AN中点【考点】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,证明三
19、角形全等是解本题的关键2、【解析】【分析】根据坐标轴上点的坐标特征求出点和点坐标,得到,再利用旋转的性质得,则可判断轴,然后根据点的坐标的表示方法写出点的坐标【详解】解:当时,解得,则,当时,则,所以,因为把绕点顺时针旋转后得到,所以,则轴,所以点的横坐标为,纵坐标为 所以点的坐标为【考点】本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:,也考查了一次函数图象上点的坐标特征3、 (1)(2)DNM的大小是定值,为120(3)【解析】【分析】(1)连接CF由等边三角形的性质易证BAECAF(SAS),即得出再根据三角形中
20、位线定理即可求出;(2)连接BE,CF利用全等三角形的性质证明EBC+BCF=120,再利用三角形的中位线定理,三角形的外角的性质证明DNM=EBC+BCF即可;(3)取AC的中点J,连接BJ,结合三角形的中位线定理可求出BJ,JN最后根据三角形三边关系即可得出结论(1)解:如图,连接CFABC是等边三角形,ADBC,AB=BC=AC,BAD=CAD=30AEF是等边三角形,EAF=60,G为EF中点,EAG=GAF=30即在BAE和CAF中,BAECAF(SAS),N为CE的中点,G为EF中点,;(2)DNM=120是定值,证明如下,如图,连接BE,CF同(1)可证BAECAF(SAS),A
21、BE=ACFABC+ACB=60+60=120,EBC+BCF=ABC-ABE+ACB+ACF=120EN=NC,EM=MF,MNCF,ENM=ECF,BD=DC,EN=NC,DNBE,CDN=EBC,END=NDC+NCD,DNM=DNE+ENM=NDC+ACB+ACN+ECF=EBC+ACB+ACF=EBC+BCF=120综上可知DNM的大小是定值,为120;(3)如图,取AC的中点J,连接BJ,BNAJ=CJ,EN=NC,JN=AE=BJ=AD=,BNBJ+JN,即BN,故线段BN的最大值为【考点】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理
22、,三角形三边关系的应用解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题4、(1)20;(2);(3)AF= CF+BF,理由见解析【解析】【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF
23、=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+C
24、FD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【考点】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键5、见解析【解析】【详解】试题分析:(1)初步探究:如图,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABCBDE,就有DE=BC=a,进而由三角形的面积公式得出结论,(2)简单运用:如图,过点A作AFBC与F,过点D作D
25、EBC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出AFBBED就可以得出BF=DE,由三角形的面积公式就可以得出结论.试题解析:(1)BCD的面积为,理由:如图,过点D作BC的垂线,与BC的延长线交于点E,BED=ACB=90,线段AB绕点B顺时针旋转90得到线段BE,AB=BD,ABD=90,ABC+DBE=90,A+ABC=90,A=DBE,在ABC和BDE中,ABCBDE(AAS),BC=DE=a,SBCD=SBCD=,(2)简单应用:如图,过点A作AFBC与F,过点D作DEBC的延长线于点E,AFB=E=90,BF=,FAB+ABF=90,ABD=90,ABF+DBE=90,FAB=EBD,线段BD是由线段AB旋转得到的,AB=BD,在AFB和BED中,AFBBED(AAS),BF=DE=,SBCD=,SBCD=,BCD的面积为,