收藏 分享(赏)

基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx

上传人:a**** 文档编号:958200 上传时间:2025-12-19 格式:DOCX 页数:30 大小:693.78KB
下载 相关 举报
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第1页
第1页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第2页
第2页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第3页
第3页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第4页
第4页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第5页
第5页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第6页
第6页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第7页
第7页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第8页
第8页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第9页
第9页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第10页
第10页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第11页
第11页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第12页
第12页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第13页
第13页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第14页
第14页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第15页
第15页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第16页
第16页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第17页
第17页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第18页
第18页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第19页
第19页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第20页
第20页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第21页
第21页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第22页
第22页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第23页
第23页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第24页
第24页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第25页
第25页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第26页
第26页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第27页
第27页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第28页
第28页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第29页
第29页 / 共30页
基础强化人教版九年级数学上册第二十三章旋转专项攻克试题(含详解).docx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图

2、案恰有三条对称轴,则的最小值为()ABCD2、如图,将斜边为4,且一个角为30的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120得到三角形EOC,则点D对应的点的坐标为()A(1,)B(,1)C(2,2)D(2,2)3、已知点与点关于原点对称,则点的坐标()ABCD4、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD5、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m的值为()ABCD6、在平面直角坐标系中

3、,点关于原点对称的点的坐标是()ABCD7、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形8、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD9、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD10、如图,点A,B的坐标分别为(1,1)、(3,2),将ABC绕点A按逆时针方向旋转90,得到ABC,则B点的坐标为()A(1,3)B(1,2)C(0,2)D(0,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)

4、1、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_2、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是_3、如图,将等边绕顶点A顺时针方向旋转,使边AB与AC重合得,的中点E的对应点为F,则的度数是_4、如图,在平面直角坐标系中,点P(1,1),N(2,0),MNP和M1N1P1的顶点都在格点上,MNP与M1N1P1是关于某一点中心对称,则对称中心的坐标为_.5、如图,菱形ABCD的边长为2,A60,E是边AB的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60得到

5、EG,连接DG、CG,则DG+CG的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,D 是 的边 延长线上一点,连接 ,把 绕点 顺时针旋转 60恰好得到 ,其中,是对应点,若 ,求 的度数2、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出3、规定:在平面内,如果一个图形绕一个定点旋转一定的角度(0180)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度称为这个图形的一个旋转角例如:正方形绕着两条对角线的交点O旋转90或180后,能与自身重合(如图1

6、),所以正方形是旋转对称图形,且有两个旋转角根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是_;A矩形B正五边形C菱形D正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:_(填序号);(3)下列三个命题:中心对称图形是旋转对称图形;等腰三角形是旋转对称图形;圆是旋转对称图形,其中真命题的个数有()个;A0B1C2D3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45,90,135,180,将图形补充完整4、如图,正方形中,M是其内一点,将绕点B顺时针旋转至,连接、,延长交与点E,交与点G(1)在图中找到与相等的线段,并证明(2)求证

7、:E是线段的中点5、如图,在平面直角坐标系中,抛物线M的表达式为yx2+2x,与x轴交于O、A两点,顶点为点B(1)求证:OAB为等腰直角三角形:(2)已知点P在y轴上,且OP1,点C在第一象限,ABC为等腰直角三角形,将抛物线M进行平移,使其对称轴经过点C,请问平移后的抛物线能否经过点P?如果能,求出平移方式;如果不能,说明理由-参考答案-一、单选题1、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质2、A【解析】【分析】根据题意画出AOB绕着O点顺时针旋转120得到

8、的AOB,连接OD,OD,过D作DMy轴,由旋转的性质得到DOD120,根据ADBDOD2,得到AOD度数,进而求出MOD度数为30,在直角三角形OMD中求出OM与MD的长,即可确定出D的坐标.【详解】解:根据题意画出AOB绕着O点顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,DOD120,D为斜边AB的中点,ADODAB2, BAODOA30,MOD30,在RtOMD中,ODOD2,MD1,OM=,则D的对应点D的坐标为(1,),故选:A.【考点】此题考查旋转的性质,直角三角形斜边中线等于斜边的一半的性质,30度角所对的直角边等于斜边的一半的性质,勾股定理,正确掌握旋转的性质

9、得到对应的旋转图形进行解答是解题的关键.3、B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可【详解】解:点与点关于原点对称,则点的坐标为,故选:B【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数4、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正

10、确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质5、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy轴,CDO=CEO=DOE90,四边形EODC是矩形,将线段AB绕点A按逆时针方向旋转

11、60得到线段AC,ABAC,BAC60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,AEOEOACDOA1,在RtBCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度6、C【解析】【分析】根据关于原点对称的点的坐标特点解答【详解】解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C【考点】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称

12、点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数7、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键8、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是

13、全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键9、B【解析】【分析】直接利用中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转

14、设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形10、D【解析】【分析】根据题意画出图形,然后结合直角坐标系即可得出B的坐标【详解】解:如图,根据图形可得:点B坐标为(0,3),故选:D【考点】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答二、填空题1、(,)【解析】【分析】先求出菱形的内角度数,过作轴于点,在中,利用特殊角度数及边长求解和长,则点坐标可求,由,得出菱形4次旋转一周,4次一个循环,由,得出菱形旋转45次后点与点重合,即可得出答案【详解】解:四边形OBCD是菱形,相邻两内

15、角之比为1:2,CBOD60,DOBC120根据旋转性质可得OBC120,CBH60过C作CHy轴于点H,如图所示:在RtCBH中,BC1,坐标为,360904,菱形4次旋转一周,4次一个循环,454111,菱形旋转45次后点与点重合,坐标为,;故答案为:,【考点】本题主要考查了菱形的性质,旋转的性质,以及坐标与图形变化,解决此类问题要熟知旋转后的不变量,得出规律是解题的关键2、(3,2)【解析】【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案【详解】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,点(3,2)关于原点对称的点的坐标是(3,2),故答案为

16、(3,2)【考点】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小3、【解析】【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出EAF的度数【详解】将等边ABC绕顶点A顺时针方向旋转,使边AB与AC重合得ACD,BC的中点E的对应点为F,旋转角为60,E,F是对应点,则EAF的度数为:60故答案为:60【考点】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键4、(2,1)【解析】【分析】观察图形,根据中心对称的性质即可解答.【详解】点P(1,1),N(2,0),由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),

17、关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,对称中心的坐标为(2,1),故答案为(2,1)【考点】本题考查了中心对称的性质:关于中心对称的两个图形能够完全重合; 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分5、【解析】【分析】取AD的中点N连接EN,EC,GN,作EHCB交CB的延长线于H根据菱形的性质,可得ADB是等边三角形,从而得到AEN是等边三角形,可证得AEFNEG,进而得到点G的运动轨迹是射线NG,继而得到GD+GCGE+GCEC,在RtBEH和RtECH中, 由勾股定理,即可求解【详解】如图,取AD的中点N连接EN,EC,GN,

18、作EHCB交CB的延长线于H四边形ABCD是菱形ADAB,A60,ADB是等边三角形,ADBD,AEED,ANNB,AEAN,A60,AEN是等边三角形,AENFEG60,AEFNEG,EAEN,EFEG,AEFNEG(SAS),ENGA60,ANE60,GND180606060,点G的运动轨迹是射线NG,D,E关于射线NG对称,GDGE,GD+GCGE+GCEC,在RtBEH中,H90,BE1,EBH60,BHBE,EH,在RtECH中,EC,GD+GC,GD+GC的最小值为故答案为:【考点】本题主要考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握菱

19、形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识是解题的关键三、解答题1、42【解析】【分析】根据旋转的性质得到,再根据计算解题即可【详解】解:把绕点A顺时针旋转60恰好得到, ,故答案为:【考点】本题考查旋转、角的和差等知识,是基础考点,掌握相关知识是解题关键2、(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键3、(1)B;(2)(1)(3)(5);(3)C

20、;(4)见解析【解析】【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计【详解】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5)故答案为:(1)(3)(5)(3)中心对称图形,旋转180一定会和本身重合,是旋转对称图形;故命题正确;等腰三角形绕一个定点旋转一定的角度(0180)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故不正确;圆具有旋转不变性,绕圆心

21、旋转任意角度一定能与自身重合,是旋转对称图形;故命题正确;即命题中正确,故选:C(4)图形如图所示:【考点】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题4、 (1),证明见解析(2)证明见解析【解析】【分析】(1)根据旋转的性质得出BM=BN,MBN=,再根据同角的余角相等可得ABM=CBN,进而得出,(2)作辅助线,过A作APBG,证明和,可得E为AN中点(1)证明:BM绕B顺时针旋转得BNBM=BN,MBN=正方形ABCDAB=BC,ABC=ABM+MBCMBN=MBC+CBNABM=CBN在中 (SAS)AM=CN(2)证明:如图,过A作APB

22、GAPB=CMBCBM+ABM=ABM+PABCBM=PAB在中 (AAS)AP=BM由(1)知,BM=BN,MBN=AP=BN,APE=EBN=PEA=BEN(AAS)AE=ENE为AN中点【考点】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,证明三角形全等是解本题的关键5、 (1)见详解(2)将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线;抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【解析】【分析】(1)将抛物线M配方为顶点式得出抛物线的对称轴为x=2,抛物线的顶点B(2,

23、2),然后求出点A(4,0),根据对称轴求出点E(2,O),BEOA,证明OEB为等腰直角三角形,再证AEB为等腰直角三角形即可;(2)根据ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90,得出点C1(4,4)将抛物线M向右平移2个单位,再向上平移2个点,得出以C1为顶点的抛物线为,以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90,得AC2,求出点C2(6,2),抛物线M向右平移4个单位得出过顶点C2的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)即可(1)解:抛物线M的表达式为,抛物线的对称轴为x=2,

24、抛物线的顶点B(2,2),抛物线与x轴的交点,解得:,点A(4,0),抛物线对称轴为x=2,点E(2,O),BEOA,OE=BE=2,OEB=90,OEB为等腰直角三角形,BOE=OBE=45,AE=OA-OE=4-2=2,BE=AE,AEB=90,AEB为等腰直角三角形,EBA=EAB=45,BOE=OBE=EBA=EAB=45,OB=AB,OBA=OBE+ABE=45+45=90,OAB为等腰直角三角形(2)解:ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90,BAC1=45,CAO=OAB+C1AB=45+45=90,CAx轴,OBA+A

25、BC1=90+90=180,点O、B、C1三点共线,C1OA=45,OAC1为等腰直角三角形,C1A=OA=4,点C1(4,4)OP=1,点P(0,1)设过点P与C1形状与M斜体的抛物线解析式为,代入坐标得解得,将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90,得AC2,C2BA=45=BAO,BC2OA,OBA=C2AB,AC2OB,四边形OBC2A,BC2=OA=4,点C2横坐标为OE+BC2=2+4=6,点C2(6,2),点P(0,1)设过点P与C2形状与M斜体的抛物线解析式为,代入坐标得解得,抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)点P(0,1)设过点P与C3形状与M斜体的抛物线解析式为,代入坐标得解得,抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【考点】本题考查图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移,掌握图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移是解题关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1