1、九年级数学上册第二十一章一元二次方程同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若实数a(a0)满足ab3,a+b+10,则方程ax2+bx+10根的情况是()A有两个相等的实数根B有两个不相
2、等的实数根C无实数根D有两个实数根2、已知关于x的一元二次方程有两个不相等的实数根x1,x2若,则m的值是()A2B1C2或1D不存在3、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()Ax(x+1)1056Bx(x1)10562Cx(x1)1056D2x(x+1)10564、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或45、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()ABCD6、已知抛物线yax2bxc(ay2B
3、y1y2Cy11且m0,x1、x2是方程mx2(m+2)x+=0的两个实数根,m=2或1,m1,m=2故选:A【考点】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式,找出关于m的不等式组;(2)牢记,3、C【解析】【分析】如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名同学,那么总共送的张数应该是x(x-1)张,即可列出方程【详解】解:全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1056故选C【考点】本题考查一元二次方程在实际生活中的应用计算全班共送多少张,首先确定一个人送
4、出多少张是解题关键4、A【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键5、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1) 件标本,即可列出方程【详解】解:由题意可得,x(x-1)=182,故选B【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键6、A【解析】【分析】
5、根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,故选A【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键7、D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:因为关于x的一元二次方程x22xm0有实数根,所以b24ac224(m1)10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【考点】本题考查了根的判别式
6、以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键8、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由方程有两个不相等的实数根,得出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求9、A【解析】【分析】根据一元二次方程的定义解答【详解】3x26x+1=0的二次项系数是3,一次项系数是6,常数项是1
7、.故答案选A.【考点】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.10、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x23,x1x21,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x23,x1x21,所以x12+x22(x1+x2)22x1x232217故选:B【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.二、填空题1、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解
8、:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.2、【解析】【分析】由韦达定理可分别求出与的值,再化简要求的式子,代入即可得解【详解】解:由方程可知,故答案为:【考点】本题考查一元二次方程根与系数的关系,利用韦达定理可简便运算3、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可【详解】解:根据新定义内容可得:,整理可得,解得,故答案为:或2【考点】本题考查新定义运算、解一元二次方程,根据题意理解新
9、定义运算是解题的关键4、-2【解析】【详解】把x=1代入+3mx+n=0得:1+3m+n=0,3m+n=1, 6m+2n=2(3m+n)=2(-1)=2,故答案为:-2【考点】考点:整体思想求代数式的值.5、3【解析】【分析】先根据一元二次方程的根与系数的关系可得,再根据可得一个关于的方程,解方程即可得的值【详解】解:由题意得:,化成整式方程为,解得或,经检验,是所列分式方程的增根,是所列分式方程的根,故答案为:3【考点】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键三、解答题1、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分
10、析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4
11、mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.2、 (1),(2),【解析】【分析】根据因式分解法解一元二次方程即可(1)解:解得,(2)解:解得,【考点】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题的关键3、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)4
12、0【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【考点】本题考查列一元一次方程解销售问题应用题,列一元二次方程
13、解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键4、 (1) ABC是等腰三角形;(2)ABC是直角三角形;(3) x1=0,x2=1【解析】【详解】试题分析:(1)直接将x=1代入得出关于a,b的等式,进而得出a=b,即可判断ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断ABC的形状;(3)利用ABC是等边三角形,则a=b=c,进而代入方程求出即可试题解析:(1)ABC是等腰三角形;理由:x=1是方程的根,(a+c)(1)22b+(ac)=0,a+c2b+ac=0,ab
14、=0,a=b,ABC是等腰三角形;(2)方程有两个相等的实数根,(2b)24(a+c)(ac)=0,4b24a2+4c2=0,a2=b2+c2,ABC是直角三角形;(3)当ABC是等边三角形,(a+c)x2+2bx+(ac)=0,可整理为:2ax2+2ax=0,x2+x=0,解得:x1=0,x2=1考点:一元二次方程的应用5、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在