1、人教版七年级数学上册第二章整式的加减章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知与是同类项,则的值是()A2B3C4D52、下列说法正确的是()A的系数是3B的次数是3C的各项分别为2a,
2、b,1D多项式是二次三项式3、如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A110B168C212D2224、代数式3x2y-4x3y2-5xy3-1按x的升幂排列,正确的是()A-4x3y2+3x2y-5xy3-1B-5xy3+3x2y-4x3y2-1C-1+3x2y-4x3y2-5xy3D-1-5xy3+3x2y-4x3y25、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:,空格的地方被墨水弄脏了,请问空格中的一项是( )A+2abB+3abC+4abD-ab6、与的5倍的差()
3、ABCD7、已知2a+3b4,则整式4a6b+1的值是()A5B3C7D108、已知与的和是单项式,则等于()AB10C12D159、语句“比的小的数”可以表示成()ABCD10、若,则的值等于()A5B1C-1D-5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m为常数,多项式为三项式,则的值是_2、多项式最高次项为_,常数项为_3、如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_4、观察下面的一列单项式:根据你发现的规律,第n个单项式为_5、三个连续偶数,中间一个数为,则这三个数的积为_三、解答题(5小题,
4、每小题10分,共计50分)1、已知多项式,且,化简2、先化简再求值:,其中3、已知多项式3x2+mx+nx2x+3的值与x无关,求(2mn)2017的值4、下面各行中的数都是正整数, 观察规律并解答下列问题:(1)数字12的位置在第4行,从左往右数第5个数,可以表示成(4,5),那么(5,6)表示的数是 (2)第n行有 个数(用含n的代数式表示)(3)数字2022排在第几行?从左往右数第几个数?请简要说明理由5、用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数
5、字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数-参考答案-一、单选题1、B【解析】【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.【详解】解:与是同类项,n+1=4,解得,n=3,故选:B.【考点】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同2、A【解析】【分析】根据单项式的次数、系数以及多项式的系数、次数的定义解决此题【详解】解:A根据单项式的系数为数字因数,那么3ab2的系数为3,故A符合题意B根据单项式的次数为所有字母的指数的和,那么4a3b的次数为4,
6、故B不符合题意C根据多项式的定义,2a+b1的各项分别为2a、b、1,故C不符合题意Dx21包括x2、1这两项,次数分别为2、0,那么x21为二次两项式,故D不符合题意故选:A【考点】本题主要考查单项式的系数,次数的定义以及多项式的项、项数以及次数的定义,熟练掌握单项式的系数,次数的定义以及多项式的项、项数以及次数的定义是解决本题的关键3、C【解析】【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解【详解】解:根据排列规律,12下面的数是14,12右面的数是16,824
7、0,22462,44684,m161412212,故选:C【考点】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键4、D【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列【详解】解:3x2y-4x3y2-5xy3-1的项是3x2y、-4x3y2、-5xy3、-1,按x的升幂排列为-1-5xy3+3x2y-4x3y2,故D正确;故选D【考点】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列要注意,在排列多项式各项时,要保持其原有的符号5、A【解析】【分析】将等式右边的已知项移到左
8、边,再去括号,合并同类项即可【详解】解:依题意,空格中的一项是:(2a2+3ab-b2)-(-3a2+ab+5b2)-(5a2-6b2)=2a2+3ab-b2+3a2-ab-5b2-5a2+6b2=2ab故选A【考点】本题考查了整式的加减运算,熟练掌握移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则解题的关键6、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解【详解】解:根据题意得: 故选:C【考点】本题主要考查了列代数式,整式的加减运算,明确题意,准确列出代数式是解题的关键7、C【解析】【分析】整式可变形为,然后把代入变形后的算式,求出算式的值是多少即可【详解
9、】解:,故选:【考点】此题主要考查了代数式求值的方法,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简8、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考查的是同类项的含义,一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.9、A【解析】【分析】根据题目中的数量关系解答即可【详解】解:的是,“比的小
10、的数”可以表示成故选A【考点】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式解答本题的关键是仔细读题,找出题目所给的数量关系10、C【解析】【分析】将两整式相加即可得出答案【详解】,的值等于,故选:C【考点】本题考查了整式的加减,熟练掌握运算法则是解本题的关键二、填空题1、6【解析】【分析】根据所给的多项式是三项式得,即可求出代数式的值【详解】解:是三项式,合并同类项之后得,即,则故答案是:6【考点】本题考查多项式的定义和代数式求值,解题的关键是掌握多项式项数的定义2、 【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案【详解】多
11、项式各项分别是:,最高次项是,常数项是故答案为:,【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项3、440【解析】【分析】先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得【详解】观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图的边上黑色棋子的个数变化依次是即第1个图需要黑色棋子的个数为第2个图需要黑色棋子的个数为第3个图需要黑色棋子的个数为第4个图需要黑色棋子的个数为归纳类推得:第n个图需要黑色棋子的个数为,其中n为正整数则第20个
12、图需要黑色棋子的个数为故答案为:440【考点】本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键4、【解析】【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案【详解】解:由已知单项式的排列规律可得第n个单项式为:故答案为:【考点】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键5、#【解析】【分析】根据连续偶数之间的差值为2可求【详解】三个连续偶数,中间一个数为前一个偶数为:,后一个偶数为:三个数的积为:故答案为:【考点】本题考查了平方差公式、单项式乘多项式等,解题的关键在于用n表示出三个偶数三、解答题1、【解析
13、】【分析】先根据非负数和的性质求出,然后代入A与B,计算整式的加减,去括号合并同类项即可【详解】解:,=,=【考点】本题考查非负数和的性质,整式的加减化简,掌握非负数和的性质,整式的加减实质是去括号合并同类项是解题关键2、,【解析】【分析】根据整式的加减运算法则化简原式,再代入求值【详解】解:原式,当时,原式【考点】本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则3、-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2
14、m-n)2017的值即可【详解】合并同类项得(n3)x2+(m1)x+3,根据题意得n3=0,m1=0,解得m=1,n=3,所以(2mn)2017=(1)2017=1【考点】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项多项式中次数最高的项的次数叫做多项式的次数4、 (1)22(2)(3)45行;86个;理由见解析【解析】【分析】(1)根据图中的数据,可以发现数字的变化特点,从而写出(5,6)表示的数;(2)根据图中的数据,可以写出第n行的数字个数;(3)根据前面发现的数字的变化特点,可以写出数字2022排在第几行,从左往右数第几个,并说
15、出理由(1)解:由图中的数据可知,第n行的最大的一个数据是,奇数行的数据从左到右依次增大,偶数行的数据从左到右依次减小,第n行有(2n-1)个数,(5,6)表示数字的位置在第5行,从左往右数第6个数,第4行最大的一个数是,第5行的数据从左往右依次为17,18,19,20,21,22,23,24,25,第5行,从左往右数第6个数是22,即 (5,6)表示的数是22,故答案为:22;(2)解:第1行有1个数,第2行有3个数,第3行有5个数, 第n行有(2n-1)个数,故答案为:(2n-1);(3)解:数字2022排在第45行,从左往右数第86个数理由如下:当为偶数时,该行第一个数为,自左向右减小;
16、当为奇数时,该行最后一个数为,自左向右增大,所以第45行最后一个数(第89个)为2025,数字2022排在第45行,从左往右数第86个数【考点】本题考查数字的变化规律,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字5、 (1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4)【解析】【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数【详解】(1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) 【考点】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握