1、八年级数学上册第十一章实数和二次根式专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简的结果是()A5BCD2、设,且x、y、z为有理数则xyz()ABCD3、的相反数是()ABCD34、定义a
2、*b3ab,abba2,则下列结论正确的有()个3*272(1)5(*)()若a*bb*a,则abA1个B2个C3个D4个5、实数2021的相反数是()A2021BCD6、下列各数中,比3大比4小的无理数是()A3.14BCD7、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限8、若有意义,则(n)2的平方根是()ABCD9、下列说法中:不带根号的数都是有理数;-8没有立方根;平方根等于本身的数是1;有意义的条件是a为正数;其中正确的有 () A0个B1个C2个D3个10、下列四种叙述中,正确的是()A带根号的数是无理数B无理数都是带根号的数C无理数
3、是无限小数D无限小数是无理数第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 _, _2、若a、b为实数,且b+4,则a+b_3、如果定义一种新运算,规定 adbc,请化简: _4、计算的结果是_5、下列各数3.1415926,1.212212221,2,2020,中,无理数的个数有_个三、解答题(5小题,每小题10分,共计50分)1、观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数,为“同心有理数对”,记为,如:数对,都是“同心有理数对”(1)数对,是“同心有理数对”的是;(2)若是“同心有理数对”,求的值;(3)若是“同心有理数对”,则“同心有理数对”
4、(填“是”或“不是”)2、阅读下列材料解答问题:新定义:对非负数x“四舍五入”到个位的值记为x,即:当n为非负整数时,如果nxn+,则xn;反之,当n为非负整数时,如果xn,则nxn+例如:0.10.490,1.512.482,33,4.55.255,试解决下列问题:(1)+2.4(为圆周率);如果x12,则数x的取值范围为;(2)求出满足xx1的x的取值范围3、计算4、计算:5、已知x+1,y1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值-参考答案-一、单选题1、A【解析】【分析】先进行二次根式乘法,再合并同类二次根式即可【详解】解: ,故选择A【考点】本题考查二次
5、根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键2、A【解析】【分析】将已知式子两侧平方后,根据x、y、z的对称性,列出对应等式,进而求出x、y、z的值即可求解【详解】解:两侧同时平方,得到,,xyz,故选择:A【考点】本题考查二次根式的加减法,x、y、z对称性,掌握二次根式加减法法则,利用两边平方比较无理数构造方程是解题关键3、A【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数【详解】解:的相反数是,故选:A【考点】此题主要考查相反数,解题的关键是熟知实数的性质4、C【解析】【分析】先按照定义书写出正确的式子再进行计算就可解决本题【详解】、,故计算正确,符合题意
6、; 、,故计算正确,符合题意;、,故计算错误,不符合题意; 、,a*bb*a,解得:, 故计算正确,符合题意综上所述,正确的有:,共3个故选:C【考点】本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键5、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键6、C【解析】【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解【详解】解:四个选项中是无理数的只有和,而1742,3212424,34选项中比3大比4小的无理数只
7、有故选:C【考点】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数7、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数8、D【解析】【详解】试题解析:有意义, 解得: 的平方根是: 故选D9、A【解析】【分析】根据是二次根式有意义的条件、平方根的概念和立方根的概念判断即可【详解】解:不带根号的数不一定都是有理数,例如,错误;-8的立方根是-2,错误;平方根等于
8、本身的数是0,错误;有意义的条件是a为非负数,错误,故选A【考点】本题考查的是二次根式有意义的条件、平方根的概念和立方根的概念,掌握二次根式中的被开方数是非负数是解题的关键10、C【解析】【分析】根据无理数的概念逐个判断即可无理数:无限不循环小数【详解】解:A,是有理数,故本选项不合题意;B是无理数,故本选项不合题意;C无理数是无限不循环小数,原说法正确,故本选项符合题意;D无限循环小数是有理数,故本选项不合题意故选:C【考点】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念无理数:无限不循环小数二、填空题1、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到
9、结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键2、5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案【详解】由被开方数是非负数,得,解得a1,或a1,b4,当a1时,a+b1+45,当a1时,a+b1+43,故答案为5或3【考点】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负3、3【解析】【分析】根据新运算的定义将原式转化成普通的运算,
10、然后进行整式的混合运算即可【详解】根据题意得: (x1)(x+3)x(x+2)x2+3xx3x22x3,故答案为:3【考点】本题主要考查了整式的混合运算,根据新运算的定义将新运算转化为普通的运算是解决此题的关键4、【解析】【分析】根据二次根式的加减运算和零指数幂的运算法则进行计算即可【详解】解:=,故答案为:【考点】本题考查了二次根式的加减运算和零指数幂,掌握运算法则是解题关键5、3【解析】【分析】根据无理数的三种形式:开不尽的方根,无限不循环小数,含有的绝大部分数,找出无理数的个数即可【详解】解:在所列实数中,无理数有1.212212221,2,这3个,故答案为:3【考点】本题考查无理数的定
11、义,熟练掌握无理数的概念是解题的关键三、解答题1、(1);(2);(3)是【解析】【分析】(1)根据:使等式成立的一对有理数,为“同心有理数对”,判断出数对,是“同心有理数对”的是哪个即可;(2)根据是“同心有理数对”,得到,求解即可;(3)根据是“同心有理数对”,得到,进行判断即可;【详解】解:(1),数对,、不是“同心有理数对”;,是“同心有理数”,数对,是“同心有理数对”的是;(2)是“同心有理数对”,(3)是理由:是“同心有理数对”,是“同心有理数对”【考点】本题主要考查了有理数和等式的性质,准确理解计算是解题的关键2、(1)6,2.5x3.5;(2)x,4,【解析】【分析】(1)利用
12、对非负实数x“四舍五入”到个位的值记为x,进而得出+2.4的值;利用对非负实数x“四舍五入”到个位的值记为x,进而得出x的取值范围;(2)利用xx1,设xk,k为整数,得出关于k的不等关系求出即可【详解】(1)由题意可得:+2.46;故答案为:6,x12,1.5x12.5,2.5x3.5;故答案为:2.5x3.5;(2)x0,x1为整数,设xk,k为整数,则xk,kk1,k1kk1+,k0,k,k3,4,5,6,7,则x,4,【考点】此题主要考查了新定义以及一元一次不等式组的应用,根据题意正确理解x的意义是解题关键3、2【解析】【分析】先根据乘方运算、负整数指数幂、开方运算进行化简,再计算加减
13、即可【详解】原式【考点】本题考查了乘方运算、负整数指数幂、开方运算,熟知各运算法则是解题关键4、【解析】【分析】直接化简二次根式,进而合并即可;【详解】=【考点】此题考查二次根式的混合运算,正确化简二次根式是解题关键5、(1)2;(2)16.【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=(+1)(-1)=()2-1=2;(2)x+1,y1,xy=2,x+y=+1+-1=2,x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3= x2(x+y)+y2(x+y)=(x2+y2)(x+y)=82=16.【考点】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.