1、7.2.2定义与命题(教案)教学目标知识与技能:1.理解公理、证明、定理的概念.2.掌握公理、证明、定理的联系与区别.过程与方法:1.通过对公理的认识,明确证明需要公理和定理.2.经历实际情境,初步体会公理化的思想和方法.情感态度与价值观:1.通过从具体例子中提炼数学概念,培养学生思维的严密性和逻辑性.2.结合实例让学生意识到证明的必要性,培养学生做到有理有据,有条理地表达自己的想法的良好意识,培养学生的语言表达能力.教学重难点【重点】理解公理、证明和定理的概念.【难点】准确找出命题的条件和结论,公理与定理的区别,写出步步有理有据的证明过程.教学准备【教师准备】教材第168页情景图和第169页
2、例题的投影图片.【学生准备】复习命题等相关概念.教学过程一、导入新课导入一:举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?要说明一个命题是正确的,无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性,其实在数学发展史上,数学家们也遇到过类似的问题.今天我们就来共同学习.(板书课题)处理方式此处教师讲,学生听,在听故事的过程中抓住学生的质疑与好奇,引出新课内容,揭示课题.设计意图通过引人入胜的数学故事,方便与学生活动交流,拉近与学生之间的距离.同时结合故事内容调动学生学习的兴趣,激发学生学习的热情,吊足学生胃口,引入新课,揭示课题.导入二:师:(出示投影)王老
3、师、李老师、范老师三名教师分别来自我市的薛城、峄城、市中三个地方,在学校分别教语文、数学和英语,已知:(1)王老师不是薛城人,李老师不是峄城人;(2)薛城人不教英语,峄城人教语文;(3)李老师不教数学.师:同学们,这三位老师分别是什么地方的教师?分别教什么课程?生1:李老师不是峄城人,所以李老师可能是市中人或薛城人;李老师不教数学,所以李老师可能教语文或英语;因为峄城人教语文,所以李老师只能教英语;而薛城人不教英语,所以李老师是市中人.生2:(补充)因为王老师不是薛城人,所以王老师可能是市中人或峄城人;李老师已经判断是市中人了,所以王老师只能是峄城人,范老师就是薛城人了.生3:(接着说)王老师
4、是峄城人,所以王老师教语文,而范老师教的课程是数学.师:三位同学推理非常合理,我们为他们鼓掌.(学生鼓掌)解决这样的逻辑推理题目的关键是:根据条件,进行依次判断,进而得出正确结论.那么,如何证实一个命题是真命题呢?我们今天继续来探究.(板书课题)设计意图加深学生对逻辑推理的理解,可激发学生学习本课时的兴趣,从而引出本课时的问题.二、 新知构建过渡语怎样判断一个命题是真命题还是假命题?你判断的依据是什么?(1)、公理、证明、定理的有关概念思路一(多媒体出示)公理、证明、定理的有关概念.问题1【课件1】公理的概念是什么?证明、定理的概念是什么?完成下列填空:(1)叫做公理.除了公理外,其他命题的真
5、假都需要通过的方法进行判断.(2)的过程称为证明.经过证明的称为定理.每个定理都只能用、和已经证明为的命题来证明.问题2【课件2】本套教科书选用的公理有哪些?本套教科书选用九条基本事实(公理)作为证明的出发点和依据,我们已经认识了其中的八条:(1);(2);(3);(4);(5);(6);(7);(8).思路二师: (投影出示)公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫原本,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称
6、为公理.除了公理外,其他真命题的正确性都需要通过演绎推理的方法证实.演绎推理的过程称为证明.经过证明的真命题称为定理,而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.原本问世之前,世界上还没有一本数学书籍像原本这样编排,因此,原本是一部具有划时代意义的著作.欧几里得生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师:(投影出示)我们这套教材中已经认识了有如下命题作为基本事实:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且
7、只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.设计意图让学生明确有哪些公理,给学生留出一定的思维空间,让他们思考如何证实真命题的问题,在此基础上,引出数学家欧几里得原本的编写思路.另外一条基本事实我们将在后面的学习中认识它.等式的有关性质和不等式的有关性质都可以看作公理,在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.问题3【课件3】还有哪些有关性质可以作为证明的依据?处理方式(1)让学生自学3分钟(要求根据多媒体出示的问
8、题逐一回答),并独立思考.(2)对于未完成的问题,小组内交流自己的想法并完善,教师巡视,检查完成情况.(3)完成多媒体出示的内容,借助多媒体展示正确答案,学生完成后及时点评,让学生对出现的问题进行矫正.(教师可以根据学生回答问题的情况给予适时点拨)(2)、公理、定理、定义及它们之间的关系(多媒体出示)问题1【课件1】公理的来源是什么?问题2【课件2】定理是怎么得到的?证明定理的依据是什么?问题3【课件3】最初的定理是怎么得到的?问题4【课件4】你能否通过图表把这个关系画出来?处理方式首先学生自主思考,挨个回答上面的问题,然后学生交流合作试画图表,此时教师给予必要的指导.巡视同时注意看有没有同学
9、能够画出较为合理的图表,有的话就给予全班展示.最后再多媒体展示,出示答案.设计意图通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.(3)、定理的证明过渡语从这些基本事实出发,我们就可以证明已经探索过的结论了,我们已经知道:同角的补角相等.怎么利用你刚才整理的公理进行证明呢?问题1【课件1】你能书写证明下面这个定理的规范步骤吗?(多媒体出示)证明:同角的补角相等.已知:1+2=180,1+3=180.求证:2=3.证明:1+2=180,1+3=180(已知),2=180-1,3=180-1(等式的性质),2=3
10、(等量代换).注意:符号“”读作“因为”,“”读作“所以”.处理方式先让学生独立思考,然后学生试着写出证明过程,最后老师在黑板上板书.说明符号“”读作“因为”,“”读作“所以”.强调“刚开始学习证明,最好在每一步的后面注明依据”.设计意图证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.巩固训练1:证明等角的补角相等.处理方式教师先让学生独立完成,并请学生板演,其他学生在练习本上完成.做完后小组之间开展互评.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示正确答案,让学生对出现的问题进行矫正.(多媒体出示下面答案)参考答案:已知
11、:1=2,1+3=180,2+4=180.求证:3=4.证明:1+3=180,2+4=180(已知),3=180-1,4=180-2(等式的性质).又1=2(已知),3=4(等量代换).设计意图在解决这个问题的过程中,帮助学生进一步理解和巩固证明的含义,引导学生利用公理、定义、已经证明的真命题解决实际问题,训练思维的严谨性、逻辑性,强化证明步骤的规范性.为了使我们的解答更为规范和有条理,请同学们根据此题总结一下证明一个命题的一般步骤.证明一个命题的一般步骤:1.已知:写出命题的条件(必要时结合图形).2.求证:写出命题的结论.3.证明:写出演绎推理的过程.处理方式在小组交流的基础上,在教师的引
12、导下,首先归纳总结出证明一个命题的一般步骤,然后让学生对照步骤,完善各自的解题过程.设计意图出示“证明一个命题的一般步骤”,使学生进一步验证并熟悉“证明一个命题的一般步骤”,然后通过自己观察、思考、争辩,发现规律、归纳总结,加深对“证明一个命题的一般步骤”的认识与理解,培养学生的分析和归纳概括的能力.证明:对顶角相等.已知:如图所示,直线AB与直线CD相交于点O,AOC与BOD是对顶角.求证:AOC=BOD. 证明:AOC+AOD=180,BOD+AOD=180(平角的定义),AOC和BOD都是AOD的补角(补角的定义),AOC=BOD(同角的补角相等).定理:对顶角相等.处理方式先找一名学生
13、到黑板板演做题步骤,其余同学在练习本上完成,此时教师在下边巡视、指导.然后师生一起规范做题步骤,并在课件上展示例题的规范步骤.设计意图教师先引导学生回想命题的一般证明步骤,再由教师示范,写出例题的过程,理由依据要强调.再找一个同学,到黑板上板演,其余同学在练习本上完成,教师巡视,适时点拨,再次向学生强调证明步骤“三步走”:已知、求证和证明,并强调证明的“三依据”:公理、定义和已经证明的真命题.你还能证明下面定理吗?定理:同角(等角)的余角相等.定理:三角形的任意两边之和大于第三边.知识拓展1.对于公理:公理是不需要推理证实的真命题,公理可以作为判断其他命题真假的根据.2.对于定理:定理都是真命
14、题,但真命题不一定都是定理;定理可以作为推证其他命题的依据.3.证明的一般步骤:根据题意,画出图形;根据条件和结论,结合图形写出已知和求证;经过分析,找出由已知推出求证的途径,写出证明过程.4.假命题的判断:判断一个命题是假命题,只要举出反例来说明即可.三、课堂总结证明的依据定义、公理定理运算和运算法则反映大小关系的有关性质四、课堂练习1.称为公理;真命题称为定理;称为证明.答案:公认的真命题经过证明的演绎推理的过程2.写出两个公理:;.答案:两点确定一条直线两点之间线段最短(答案不唯一)3.“平行于同一条直线的两条直线平行”可以写成:如果,那么.答案:两条直线平行于同一条直线这两条直线平行4
15、.判断“对应角相等的三角形是全等三角形”这一命题的真假性,并给出证明.解析:先判断出这一命题的真假,再举例证明即可.解:对应角相等的三角形是全等三角形,是假命题.举例证明:如图所示,DEBC,ADE=B,AED=C,A=A,但ADE与ABC不全等.五、板书设计第2课时1.公理、证明和定理2.证明的基本依据3.定理的证明六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.3第2题.(2)、课后作业【基础巩固】1.下列叙述错误的是()A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题2.下列命题为假命题的是()A.三角形三个内角的
16、和等于180B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半3.已知命题:等底等高的两个三角形面积相等,则这个命题的结论是()A.两个三角形B.两个三角形的面积C.两个三角形的面积相等D.两个三角形等底等高4.命题“对顶角相等”的“条件”是.【能力提升】5.如图所示,AB=AE,1=2,C=D.求证ABCAED. 【思维拓展】6.如图所示,已知AOC与BOD都是直角,BOC=65. (1)求AOD的度数;(2)求证AOB=DOC;(3)若不知道BOC的具体度数,其他条件不变,(2)的关系仍成立吗?若成立,说明理由.【答案与
17、解析】1.B2.C(解析:直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题.)3.C4.两个角是对顶角(解析:改写成“如果两个角是对顶角,那么这两个角相等”就容易找到命题的条件和结论了.)5.证明:因为1=2,所以1+EAC=2+EAC,即BAC=EAD,在ABC和AED中,C=D,BAC=EAD,AB=AE,所以ABCAED(AAS).6.解析:(1)先求出DOC,继而得出AOD.(2)分别求出AOB和DOC的度数,可得AOB=DOC.(3)(2)的关系依然成立,根据同角的余角相等可得.(1)解:因为DOC=DOB-BOC=90-65=25,所以AOD=AOC+DOC=90+25=115.(2)证明:因为DOC=25,AOB=AOC-BOC=90-65=25,所以AOB=DOC.(3)解:成立.因为AOB=AOC-BOC=90-BOC,COD=BOD-BOC=90-BOC,所以AOB=COD.