收藏 分享(赏)

湖北省巴东一中高二数学教案 选修2-2:1.doc

上传人:高**** 文档编号:939443 上传时间:2024-06-01 格式:DOC 页数:4 大小:189.50KB
下载 相关 举报
湖北省巴东一中高二数学教案 选修2-2:1.doc_第1页
第1页 / 共4页
湖北省巴东一中高二数学教案 选修2-2:1.doc_第2页
第2页 / 共4页
湖北省巴东一中高二数学教案 选修2-2:1.doc_第3页
第3页 / 共4页
湖北省巴东一中高二数学教案 选修2-2:1.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.5.1曲边梯形的面积【学情分析】:本节教材是在学生学习导数及其在研究函数的应用的基础上,开始初步探究定积分的概念。学生对这个解决问题的思想方法和步骤还是很生疏,必须深入浅出,逐步渗透.【教学目标】:(1)知识与技能:定积分概念的引入(2)过程与方法:“分割、近似求和、取极限”数学思想的建立(3)情感态度与价值观:通过引导学生用已学知识求曲边梯形的面积,培养学生应用数学的意识。 【教学重点】:了解定积分的基本思想方法以直代曲、逼近的思想,初步掌握求曲边梯形面积的步骤。【教学难点】:“以直代曲”“逼近”思想的形成过程;求和符号。【教学过程设计】:一、创设情景我们学过如何求正方形、长方形、三角形

2、等的面积,这些图形都是由直线段围成的。那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。定积分在科学研究和实际生活中都有非常广泛的应用。本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。一个概念:如果函数在某一区间上的图像是一条连续不断的曲线,那么就把函数称为区间上的连续函数(不加说明,下面研究的都是连续函数)二、新课讲授问题:如图,阴影部分类似于一个梯形,但有一边是曲线的一段,我们把由直线和曲线所围成的图形称为曲边梯形如何计算这个曲边梯形的面积? 例1:求图中阴影部分是由抛物线,直线以及轴所围成的平面图形的面积S。思考:(1)曲边梯形与“直

3、边图形”的区别? (2)能否将求这个曲边梯形面积S的问题转化为求“直边图形”面积的问题?分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段“以直代曲”的思想的应用xxx1 x1 xy1 xyy 把区间分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积解:(1

4、)分割在区间上等间隔地插入个点,将区间等分成个小区间: , 记第个区间为,其长度为: 分别过上述个分点作轴的垂线,从而得到个小曲边梯形,他们的面积分别记作: ,显然,(2)近似代替记,如图所示,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从图形上看,就是用平行于轴的直线段近似的代替小曲边梯形的曲边(如图)这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有 (3)求和由,上图中阴影部分的面积为=从而得到的近似值 (4)取极限分别将区间等分8,16,20,等份(如图),可以看到,当趋向于无穷大时,即趋向于0

5、时,趋向于,从而有从数值上的变化趋势: 三、求曲边梯形面积的四个步骤:第一步:分割将分为等份,每份区间长为第二步:近似代替,“以直代取”:,即用矩形的面积近似代替小曲边梯形的面积.第三步:求和:第四步:取极限:说明:1归纳以上步骤,其流程图表示为:分割以直代曲求和逼近2最后所得曲边形的面积不是近似值,而是真实值四、练习求围成图形面积解:1分割在区间上等间隔地插入个点,将区间等分成个小区间: , 记第个区间为,其长度为:分别过上述个分点作轴的垂线,从而得到个小曲边梯形,他们的面积分别记作: , 显然, (2)近似代替,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有 (3)求和由,上图中阴影部分的面积为=从而得到的近似值 (4)取极限 练习设S表示由曲线,x=1,以及x轴所围成平面图形的面积。五:课堂小结求曲边梯形的思想和步骤:分割以直代曲求和逼近 (“以直代曲”的思想)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3