1、习题课(2)一、选择题(本大题共8小题,每小题5分,共40分)1等比数列an中,a44,则a2a6等于(C)A4B8C16D32解析:a2a6a16,选C.2已知等比数列an的公比为正数,且a3a92a,a21,则a1(B)A. B.C.D2解析:设等比数列an的公比为q,由已知得a1q2a1q82(a1q4)2,即q22.又等比数列an的公比为正数,所以q,故a1.3首项为a的数列an既是等差数列,又是等比数列,则这个数列的前n项和Sn为(D)Aan1BanC(n1)aDna解析:由题意得数列an是非零常数列,Snna.4设首项为1,公比为的等比数列an的前n项和为Sn,则(D)ASn2an
2、1BSn3an2CSn43anDSn32an解析:因为a11,公比q,所以ann1,Sn332n132an,故选D.5在等比数列an中,|a1|1,a58a2,a5a2,则an等于(A)A(2)n1B(2)n1C(2)nD(2)n解析:由a58a2,得公比q2.又a5a2,知a50,a10,a11,ana1qn1(2)n1.6设等比数列an的前n项和为Sn,若3,则等于(B)A2 B.C.D3解析:因为S4,S8S4,S12S8也成等比数列,所以(S8S4)2S4(S12S8),又S4S8,2S8(S12S8),S12S8,即.故选B.7等差数列an的前n项和为Sn,S515,S918,在等比
3、数列bn中,b3a3,b5a5,则b7的值为(B)A. B.C2D3解析:在等差数列an中,由得a33,a52.于是b33,b52,所以b7.8已知等比数列an的各项都为正数,且当n3时,a4a2n4102n,则数列lga1,2lga2,22lga3,23lga4,2n1lgan,的前n项和Sn等于(C)An2nB(n1)2n11C(n1)2n1D2n1解析:等比数列an的各项都为正数,且当n3时,a4a2n4102n,a102n,即an10n,2n1lgan2n1lg10nn2n1,Sn122322n2n1,2Sn12222323n2n,得Sn12222n1n2n2n1n2n(1n)2n1,
4、Sn(n1)2n1.二、填空题(本大题共3小题,每小题5分,共15分)9已知an是递增等比数列,a22,a4a34,则此数列的公比q2.解析:设an的公比为q,则a4a2q2,a3a2q.所以a4a3a2q2a2q4,又a22,所以q2q20,解得q2或q1.又an为递增数列,则q2.10在等比数列an中,已知a1a2a31,a4a5a62,则该数列的前15项和S1511.解析:记b1a1a2a3,b2a4a5a6,b5a13a14a15,依题意bn构成等比数列,其首项b11,公比为q2,则bn的前5项和即为an的前15项和S1511.11等比数列an的前n项和为Sn,公比不为1.若a11,且
5、对任意的nN都有an2an12an0,则S511.解析:由an为等比数列可知an0,an2an12an0,q2q20,q1(舍)或q2.S511.三、解答题(本大题共3小题,每小题15分,共45分写出必要的文字说明、计算过程或演算步骤)12等比数列an的前n项和为Sn,已知S1,S3,S2成等差数列(1)求an的公比q;(2)若a1a33,求Sn.解:(1)依题意有a1(a1a1q)2(a1a1qa1q2),a10,2q2q0.又q0,从而q.(2)由已知可得a1a123,故a14,Sn.13已知数列an的前n项和Sn,nN.(1)求数列an的通项公式;(2)设bn2an(1)nan,求数列b
6、n的前2n项和解:(1)当n1时,a1S11;当n2时,anSnSn1n.当n1时,符合上式故数列an的通项公式为ann.(2)由(1)知,ann,故bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.14已知数列an的前n项和为Sn,且an是Sn与2的等差中项,数列bn中,b11,点P(bn,bn1)在直线xy20上(1)求a1和a2的值;(2)求数列an,bn的通项an和bn;(3)设cnanbn,求数列cn的前n项
7、和Tn.解:(1)an是Sn与2的等差中项,Sn2an2,a1S12a12,解得a12.a1a2S22a22,解得a24.(2)Sn2an2,Sn12an12,又SnSn1an(n2,nN),an2an2an1,an0,2(n2,nN),即数列an是等比数列a12,an2n.点P(bn,bn1)在直线xy20上,bnbn120,bn1bn2,即数列bn是等差数列又b11,bn2n1.(3)cn(2n1)2n,Tna1b1a2b2anbn12322523(2n1)2n,2Tn122323(2n3)2n(2n1)2n1.因此Tn12(22222322n)(2n1)2n1,即Tn12(23242n1)(2n1)2n1,Tn(2n3)2n16.