1、七年级数学上册第三章整式及其加减定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用表示的数一定是()A正数B正数或负数C正整数D以上全不对2、苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那
2、么需要付费A元B元C元D元3、与的5倍的差()ABCD4、化简的结果是()ABCD5、若多项式的值为2,则多项式的值是()A11B13C-7D-56、下列各式中,与为同类项的是()ABCD7、化简的结果是()ABCD8、如图,边长为的正方形纸片上剪去四个直径为的半圆,阴影部分的周长是()ABCD9、用正方形按如图所示的规律拼图案,其中第个图案中有5个正方形,第个图案中有9个正方形,第个图案中有13个正方形,第个图案中有17个正方形,此规律排列下去,则第个图案中正方形的个数为()A32B34C37D4110、下列各式:mn,m,8,x2+2x+6,y35y+中,整式有()A3个B4个C6个D7个
3、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当时,整式_2、观察下列一系列数:按照这种规律排下去,那么第8行从左边数第14个数是_3、多项式是关于x的二次三项式,则m的值是_4、多项式最高次项为_,常数项为_5、已知一件商品的进价为a元,超市标价b元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利_元(用含有a、b的代数式表示)三、解答题(5小题,每小题10分,共计50分)1、一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下表所示(单位:如)第一次第二次第三次第四次x(1)填空;这辆出租
4、车第三次行驶的方向是_、第四次行驶方向是_;(2)求经过连续4次行驶后,这辆出租车所在的位置2、化简求值:3xy2xy2(xyx2y)+3 xy2+3x2y,其中x=3,y=3、化简:(1);(2)4、如图,已知线段(为常数),点C为直线AB上一点(不与A、B重合),点P、 Q分别在线段BC、AC上,且满足,(1)如图1,点C在线段AB上,求PQ的长;(用含m的代数式表示)(2)如图2,若点C在点A左侧,同时点在线段AB上(不与端点重合),求的值5、2022年北京冬奥会开幕式主火炬台由96块小雪花形态和6块橄榄枝构成的巨型“雪花”形态,在数学上,我们可以通过“分形”近似地得到雪花的形状操作:将
5、一个边长为1的等边三角形(如图)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图,称为第一次分形接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图),称为第二次分形不断重复这样的过程,就得到了“科赫雪花曲线”(1)【规律总结】每一次分形后,得到的“雪花曲线”的边数是前一个“雪花曲线”边数的 倍;每一次分形后,三角形的边长都变为原来的 倍;(2)【问题解决】试猜想第n次分形后所得图形的边数是 ;周长为 (用含n的代数式表示)-参考答案-一、单选题1、D【解析】【分析】字母可以表示任
6、何数,A、B、C三个选项说法都不全面.【详解】字母可以表示任何数,即a可以表示正数、0或负数,故选D.【考点】本题考查了代数式,需要注意字母可以表示任意数,既可以是正数,也可以是负数和0,带有负号的数不一定就是负数.2、A【解析】【分析】按8折出售就是买原价的80,即用原价a乘以8 0即可.【详解】由题意得,a80=0.8a(元).故选A.【考点】本题考查了列代数式,仔细审题,明确题目中的数量关系是解答此类题的关键,本题要熟记打几折就是卖原价的百分之几十.3、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解【详解】解:根据题意得: 故选:C【考点】本题主要考查了列代数式
7、,整式的加减运算,明确题意,准确列出代数式是解题的关键4、B【解析】【分析】根据去括号法则,先去小括号,再去中括号,然后去大括号,即可求解【详解】解:故选:B【考点】本题主要考查了去括号,熟练掌握去括号法则:括号前面是“+”号,去掉括号和括号前面的“+”号,括号里的各项都不改变符号;括号前面是“-”号,去掉括号和括号前面的“-”号,括号里的各项都改变符号是解题的关键5、D【解析】【分析】将多项式变形为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主要考查代数式的求值,利用整体代入思想求解是解题的关键6、A【解析】【分析】含有相同字母,并且相同字母的指数相同的单项式为同类项,
8、据此分析即可【详解】与是同类项的特点为含有字母,且对应的指数为2,的指数为1,只有A选项符合;故选A【考点】本题考查了同类项的概念,掌握同类项的概念是解题的关键7、D【解析】【分析】根据去括号的方法计算即可【详解】解:(abc)abc故选D【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号运用这一法则去掉括号8、D【解析】【分析】根据题意,阴影部分的周长等于正方形的周长减去4,再加上4个半圆的周长,即可求得答案【详解】解:由题意可得:阴影部分的周长故选
9、D【考点】本题考查了列代数式,根据题意求得周长是解题的关键9、C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+41;第3个图中有13个正方形,可以写成:5+4+4=5+42;第4个图中有17个正方形,可以写成:5+4+4+4=5+43;第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:49+1=37故选:C【考点】本题主要考查了图形的变化规
10、律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键10、C【解析】【分析】根据整式的定义,结合题意即可得出答案【详解】解:在mn,m,8,x2+2x+6,y35y+中,整式有mn,m,8, x2+2x+6,一共6个故选:C【考点】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母单项式和多项式统称为整式二、填空题1、9【解析】【分析】根据题意先将代数式去括号,合并同类项化简,再将字母的值代入求解即可;【详解】当,原式故答案为:9【考点】本题考查了去括号,合并同类项
11、,代数式求值,正确的去括号是解题的关键2、【解析】【分析】根据图中的数字,可以发现数字的变化特点,从而可以求得第8行从左边数第14个数,本题得以解决【详解】解:由图可得,第一行有1个数,第二行有3个数,第三行有5个数,则第8行有15个数,前七行一共有:个数字,则第8行从左边数第14个数的绝对值是,图中的奇数都是负数,偶数都是正数,第8行从左边数第14个数是,故答案为:【考点】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的数字3、【解析】【分析】直接利用二次三项式的次数与项数的定义得出m的值【详解】多项式是关于x的二次三项式,且,故答案为:【考点】本题主要考查了多项式
12、,正确利用多项式次数与系数的定义得出m的值是解题关键4、 【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案【详解】多项式各项分别是:,最高次项是,常数项是故答案为:,【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项5、(0.8ba)【解析】【分析】根据“标价售价”用代数式表示出售价,再根据“售价进价利润”用代数式表示盈利【详解】解:根据题意得,每件商品盈利(0.8ba)元,故答案为:(0.8ba)【考点】考查了列代数式,解题关键是熟记“标价=售价,售价-进价=利润”三、解答题1、(1)东,西;(2)向东()km处
13、【解析】【分析】(1)以A为原点,根据数的符号即可判断车的行驶方向;(2)将四次行驶路程(包括方向)相加,根据判断出租车的位置【详解】解:(1),x-40,16-2x0,第三次是向东,第四次是向西,故答案为:东,西;(2)x+=,0,经过连续4次行驶后,这辆出租车所在的位置是向东()km处【考点】本题考查了整式的加减,主要考查学生分析问题和解决问题的能力,用数学解决实际问题,题型较好2、xy;1【解析】【分析】直接去括号进而合并同类项,再把已知代入求出答案【详解】原式=3xy2xy+2(xyx2y)3xy2+3x2y=3xy2xy+2xy3x2y3xy2+3x2y=xy,当x=3,y=时,原式
14、=1【考点】此题主要考查了整式的加减,正确合并同类项是解题关键3、 (1)(2)【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)将与看成一个整体,然后合并同类项即可求出答案(1)原式(2)原式【考点】本题考查了整式的加减运算,解题关键是熟练运用整式的加减运算法则,本题属于基础题型4、(1);(2)【解析】【分析】(1)根据已知为常数),以及线段的中点的定义解答;(2)根据题意,画出图形,求得,即可得出与1的大小关系【详解】解:(1),点恰好在线段中点,为常数),;(2)如图示:,【考点】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键5、 (1)4;
15、(2);【解析】【分析】(1)根据第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,可得答案;(2)由(1)可得第n次分形后所得图形的边数是,边长为,所以周长为(1)解:等边三角形的边数为3,边长为1,第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,每一次分形后,得到的“雪花曲线”的边数是前一个“雪花曲线”边数的4倍;每一次分形后,三角形的边长都变为原来的倍故答案为:4;(2)解:第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,所以第n次分形后所得图形的边数是,边长为,所以周长为故答案为:;【考点】此题考查图形的变化规律,解题关键是找出图形之间的联系,得出运算规律