1、五步教学设计模式(高一)教学案: 主备人:宝秋国必修一课题: 指数函数及其性质一、教学目标:使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;理解指数函数的的概念和意义,能画出具体指数函数的图象,掌握指数函数的性质. 教学重点:掌握指数函数的的性质教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质二、预习导学(一)复习准备:1. 提问:零指数、负指数、分数指数幂是怎样定义的?2. 提问:有理指数幂的运算法则可归纳为几条?(二)学习新知:1.教学指数函数模型思想及指数函数概念: 探究两个实例: A细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次
2、由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84,那么以时间x年为自变量,残留量y的函数关系式是什么? 讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么? 定义:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.讨论:为什么规定0且1呢?否则会出现什么情况呢? 举例:生活中其它指数模型?三、问题引领,知识探究 讨论:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 回顾:研究方法:画出函数的图象
3、,结合图象研究函数的性质 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性 作图:在同一坐标系中画出下列函数图象: , (师生共作小结作法) 探讨:函数与的图象有什么关系?如何由的图象画出的图象?根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或1/3等后? 根据图象归纳:指数函数的性质 (书P56)四、练习内化例1:(P56 例6)已知指数函数(0且1)的图象过点(3,),求例2:(P56例7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )与( 3 ) 1.70.3 与 0.93.1例3:求下列函数的定义域:(1) (2)五、分层配餐基础训练1、 P58 1、2题2、 函数是指数函数,则的值为 .3、 比较大小:; ,.能力提升4、探究:在上,值域?