1、八年级数学上册第十四章整式的乘法与因式分解专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,当时,则的值是()ABCD2、计算:的结果是()ABCD3、下列因式分解正确的是()ABCD4、计算
2、的结果是()ABCD5、已知,则M与N的大小关系为()ABCD6、已知是一个完全平方式,那么m为()AB CD7、下列计算正确的是()ABCD8、若,则的值分别为()A9,5B3,5C5,3D6,129、将4张长为a、宽为b(ab)的长方形纸片按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积之和为S1,阴影部分的面积之和为S2若S1S2,则a,b满足()A2a5bB2a3bCa3bDa2b10、如果xm2,xn,那么xm+n的值为()A2B8C D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、若a2b1,则32a4b的值是_3、已知,
3、则代数式的值为_4、_.5、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_三、解答题(5小题,每小题10分,共计50分)1、2、先分解因式,再求值:已知5x+y2,5y3x3,求3(x+3y)212(2xy)2的值3、仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值解:设另一个因式为,得则解得:,另一个因式为,的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及的值4、分解因式:5、.-参考答案-一、单选题1、A【解析】【分析】根据已知,得a=5b,c=5d,将其
4、代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口2、B【解析】【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可【详解】解:原式故选B【考点】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键3、D【解析】【分析】根据因式分解的方法,逐项分解即可【详解】A. ,不能因式分解,故该选项不正确,不符合题意;B. 故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意故选D【考点】本题考查了因式分解,掌握因式分解的方法是解题的关键4、
5、B【解析】【分析】根据幂的乘方的性质和同底数幂的乘法计算即可.【详解】解:=故选B.【考点】本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.5、B【解析】【分析】利用完全平方公式把N-M变形,根据偶次方的非负性解答【详解】解:N-M=(m2-3m)-(m-4)=m2-3m-m+4=m2-4m+4=(m-2)20,N-M0,即MN,故选:B【考点】本题考查的是完全平方公式的应用,掌握完全平方公式、偶次方的非负性是解题的关键6、C【解析】【分析】根据完全平方公式即可得【详解】由题意得:,则,因此,故选:C【考点】本题考查了完全平方公式,熟记公式是解题关键7、B【解析】【
6、分析】根据乘方运算法则和指数的乘法运算法则判断各选项即可【详解】A中,错误;B中,正确;C中,错误;D中,错误故选:B【考点】本题考查乘方运算和指数的乘法运算,乘方运算法则和指数乘法运算法则容易混淆,需要关注8、B【解析】【分析】根据积的乘方法则展开得出a3mb3n=a9b15,推出3m=9,3n=15,求出m、n即可【详解】解:(ambn)3=a9b15,a3mb3n=a9b15,3m=9,3n=15,m=3,n=5,故选B9、C【解析】【分析】先用含有a、b的代数式分别表示出S1和S2,再根据S1S2得到关于a、b的等式,整理即可【详解】由题意得:S2ab42ab,S1(a+b)22aba
7、2+b2,S1S2,3S15S23a2+3b252ab,3a210ab+3b20,(3ab)(a3b)0,3ab(舍),或a3b故选:C【考点】本题考查了整式的混合运算,熟练运用完全平方公式及因式分解的方法是解题的关键10、C【解析】【分析】根据同底数幂的乘法进行运算即可【详解】解:如果xm2,xn,那么xm+nxmxn2故选:C【考点】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式二、填空题1、【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,直接提
8、取公因式x再应用完全平方公式继续分解即可【详解】解:故答案为: 【考点】本题主要考查了因式分解能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍2、1【解析】【分析】先把代数式32a+4b化为32(a2b),再把已知条件整体代入计算即可.【详解】根据题意可得:32a+4b=32(a2b)=32=1.故答案为:1.【考点】本题考查了代数式求值.注意此题要用整体思想.3、49【解析】【分析】先将条件的式子转换成a+3b=7,再平方即可求出代数式的值【详解】解:,故答案为:49【考点】本题考查完全平方公式的简单应用,关键在
9、于通过已知条件进行转换4、a【解析】【详解】原式=.故答案为.5、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键三、解答题1、【解析】【分析】先提公因式3mn,再利用十字相乘法分解因式即可【详解】解:原式【考点】本题考查因式分解,熟练掌握提公因式法和十字相乘法分解因式是解答的关键2、3(5x+y)(3x+5y);18【解析】【分析】将原式先提取公因式3,再利用平方差
10、公式分解因式,继而将5x+y=2,5y-3x=3整体代入计算可得【详解】解:原式3(x+3y)24(2xy)23(x+3y)+2(2xy)(x+3y)2(2xy)3(x+3y+4x2y)(x+3y4x+2y)3(5x+y)(3x+5y),当5x+y2,5y3x3时,原式32318【考点】本题考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子是解题的关键3、另一个因式为 ,的值为5【解析】【分析】设另一个因式是,则,根据对应项的系数相等即可求得和的值【详解】解:设另一个因式为,得则解得:,故另一个因式为 ,的值为5【考点】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是关键4、【解析】【分析】先分组提公因式、然后再用平方差公式因式分解即可【详解】解:原式=【考点】本题主要考查了因式分解,掌握分组提公因式和运用平方差公式因式分解是解答本题的关键5、【解析】【分析】先计算乘方,然后计算括号,再计算除法即可.【详解】解:原式【考点】本题主要考查了整式的运算,涉及幂的乘方,多项式的乘除运算,熟练掌握运算法则是解题的关键.