1、3.2全集与补集教学设计教学目标:一、 知识与技能(1) 通过实例了解全集的含义及其符号表示.(2) 通过实例及图形表示来理解补集的含义,会求给定子集的补集.(3) 熟练掌握集合交、并、补的综合运算.二、 过程与方法通过对概念、性质、规律的探究提高学生抽象概括能力、培养数形结合能力、掌握归纳类比的方法.三、 情感、态度、价值观(1)培养学生主动学习的意识,并通过合作学习的形式,培养学生积极参与的主体意识.(2)借助集合(作为一种数学语言)让学生体会数学符号化解决问题的简洁美.教学重点:掌握补集的概念及交、并、补的综合运算,会用Venn图、数轴进行集合的运算.教学难点:对补集概念的理解,补集应用
2、中方法规律的探究.教学方法:问题探讨式与实践式相结合.教学准备:PPT.教学用时:一课时.教学过程:一、 回顾思考:结合集合的基本运算(交集与并集)考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?你能说出集合D与集合A,B之间的关系吗?(1) A=6,8,10,12, B=3,6,9,12 ,C=6,12,D=3,6,8,9,10,12.1、 交集一般地,由既属于集合A又属于集合B的所有元素组成的集合,叫作A与B的交集,记作AB,(读作“A交B”),即AB=x|xA,且xB.2、 并集 一般地,由属于集合A或属于集合B的所有元素组成的集合,叫作A与B的并集,记作AB,(读作“A并B”
3、).即 AB=x|xA,或xB.二、 新知思考:集合间还有其它的基本运算吗?考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?你能说出集合D与集合A,B之间的关系吗?(1) A=6,8,10,12, B=3,6,9,12 ,C=6,12,D=3,6,8,9,10,12.1、全集与补集 在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,常用符号U表示.全集含有我们所要研究的这些集合的全部元素.设U是全集,A是U的一个子集(即),则由U中所有不属于A的元素组成的集合,叫作U中子集A的补集(或余集).补集可用Venn图表示为:说明:补集是与全集同时存在的,补集的概念必须要有全集的限制.全集不同,对同一个集合的补集也不同.2、例题讲解三、 演练一队练二队练四、 小结回顾本节课你有什么收获?1、全集和补集的概念.2、补集的性质.3、用数轴法和Venn图法进行集合的交集、并集、补集运算.五、 作业完成书本习题P14-15六、 板书设计3.2 全集与补集一、 全集 四、例题二、 补集三、 相关性质