1、专题十 数列讲义10.3 数列求通项知识梳理.数列求通项1.利用与的关系求通项公式;2.累加法:若已知且的形式; 3.累乘法:若已知且的形式;4.构造法:若已知且的形式 (其中p,q均为常数);题型一. 利用Sn与an的关系考点1.已知Sn与an的关系求an1已知数列an为等差数列,且a35,a59,数列bn的前n项和Sn=23bn+13()求数列an和bn的通项公式;【解答】解:()数列an为等差数列,d=12(a5a3)2,又a35,a11,an2n1,当n1时,S1=23b1+13,b11,当n2时,bnSnSn1=23bn23bn1,bn2bn1,即数列bn是首项为1,公比为2的等比数
2、列,bn(2)n1, 2已知数列an的前n项和Sn满足2Sn=3(an1)(nN)(1)求数列an的通项公式;【解答】解:(1)当n1时,2S13(a11)2a1,得a13,当n2时,2Sn3(an1),2Sn13(an11),两式作差可得2 an3an3an1,即an3an1,所以数列an是以3为首项,3为公比的等比数列,所以an3n;3记Sn为数列an的前n项和,已知an0,an23an46Sn(1)求数列an的通项公式;【解答】解:(1)当n1时,a123a1=46S1,所以a14或a11(舍)当n2时,因为an23an=46Sn,所以an123an1=46Sn1,两式相减得(an+an
3、1)(anan1+3)0,因为an0,所以anan13,所以数列an是以4为首项3为公差的等差数列,所以an4+(n1)(3)3n1 考点2.带省略号1设数列an满足a1+3a2+(2n1)an=2n(nN)()求a1,a2及an的通项公式;【解答】解:()a1+3a2+(2n1)an2n,当n1时,a12,当n2时,a1+3a24,a2=23,a1+3a2+(2n1)an2n,n2时,a1+3a2+(2n3)an12(n1),得:(2n1)an2,an=22n1,又n1时,a12满足上式,an=22n1;2已知数列an,an2n+1,则1a2a1+1a3a2+1an+1an=()A1+12n
4、B12nC112nD1+2n【解答】解:an+1an2n+1+1(2n+1)2n1an+1an=12n1a2a1+1a3a2+1an+1an=12+122+12n=112n故选:C题型二. 累加法1已知数列an满足a11,an+1an+n+1(1)求an的通项公式;【解答】解:(1)由a11,an+1an+n+1,可得n2时,anan1n,可得ana1+(a2a1)+(a3a2)+.+(anan1)1+2+3+.+n=12n(n+1),即an=12n(n+1),nN*;2设数列an满足a12,an+1an322n1,则数列an的通项公式是an22n1【解答】解:a12,an+1an322n1,
5、n2时,ana1+(a2a1)+(a3a2)+(anan1)2+32+323+322n32+32(14n1)14=22n1;当n1时a12适合上式an=22n1故答案为:22n13在数列an中,a1=2,an+1=an+ln(1+1n),则数列an的通项an 【解答】解:a122+ln1,a22+ln2,a3=2+ln2+ln(1+12)=2+ln2(1+12)2+ln3,a4=2+ln3+ln(1+13)=2+ln4由此可知an2+lnn故选:D题型三.累乘法1在数列an中,已知(n2+n)an+1(n2+2n+1)an,nN+,且a11,求an的表达式【解答】解:由题意,an+1n+1=a
6、nna11,ann是以1为首项,0为公差的等差数列,ann=1,ann2已知数列an满足a13,an+1=3n13n+2an(n1),求an的通项公式【解答】解:数列an满足a13,an+1=3n13n+2an(n1),anan1=3n43n1(n2),an=anan1an1an2a3a2a2a1a1=3n43n13n73n458253=63n1,当n1时也成立an=63n13已知正项数列an的首项a11,且2nan+12+(n1)anan+1(n+1)an20(nN*),则an的通项公式为an(12)n1n【解答】解:2nan+12+(n1)anan+1(n+1)an20,(2nan+1(n
7、+1)an)(an+1+an)0,数列an为正项数列,an+1+an0,2nan+1(n+1)an0,an+1an=n+12n,a2a1=22,a3a2=34,a4a3=46,anan1=n2(n1),两边累乘得,ana1=223446n2(n1)=n(12)n1an=(12)n1n,故答案为:(12)n1n,题型四. 构造法1已知数列an的前n项和为Sn,满足an+12an+1,且a1+2a2a3(1)求数列an的通项公式;【解答】解:(1)数列an的前n项和为Sn,满足an+12an+1,整理得:an+1+12(an+1),由a1+2a2a32a2+1,解得a11,故数列an+1是以a1+
8、12为首项,2为公比的等比数列;所以an=2n12已知数列an满足an3an1+3n(n2,nN*),首项a13(1)求数列an的通项公式;【解答】解:(1)数列an满足an=3an1+3n(n2,nN*),an3an1=3n,又3n0,an3nan13n1=1为常数,数列an3n是首项为a13=1、公差为1的等差数列,an3n=n,an=n3n(nN*);3已知数列an满足a1=12,an+1=anan+1,则a2021()A12019B12020C12021D12022【解答】解:因为an+1=anan+1,则1an+11an=1,又a1=12,则1a1=2,所以数列1an是首项为2,公差为1的等差数列,则1an=n+1,所以an=1n+1,则a2021=12021+1=12022故选:D