1、京改版八年级数学上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其
2、形状稳定,那么至少需要添加()个螺栓A1B2C3D42、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是()ABCD3、下列说法:数轴上的任意一点都表示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A个B个C个D个4、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()A不可能发生B可能发生C很可能发生D必然发生5、下列计算中,结果正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使A
3、BDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE2、下列数中不是无理数的是()ABC0.37373737D3、如果,那么下列等式正确的是()ABCD4、下列命题中,真命题是()A两个锐角对应相等的两个直角三角形全等B斜边及一锐角对应相等的两个直角三角形全等C两条直角边对应相等的两个直角三角形全等D一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等5、下列各组数中,不互为相反数的是()A-2与B与C与D 与第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作A
4、BC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm22、已知,则的值是_3、如图,若ABCA1B1C1,且A110,B40,则C1_4、若,则_5、如图,的度数为_四、解答题(5小题,每小题8分,共计40分)1、已知a、b、c是ABC的三边,且满足,且a+b+c=12,请你探索ABC的形状2、计算:3、在数轴上作出表示的点(保留作图痕迹,不写作法)4、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()35、计算:(1)(2)-参考答案-一、单选题1、A【解析
5、】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键2、C【解析】【分析】根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可【详解】由题意得,由三角形的外角性质可知,故选C【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键3、C【解析】【分析】数轴上的点可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,所以错误;根
6、据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,故错误;根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键4、D【解析】【分析】根据事件的可能性判断相应类型即可【详解】5个红球、4个白球放入一个不透明的盒子里,由于红球和白球的个数都小于6,从中摸出6个球,恰好红球与白球都摸到,是必然事件.故选:D.【考点】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待一般地必然事件的可能性大小为1,不
7、可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间5、C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项正确,符合题意;D.,故该选项不正确,不符合题意;故选:C【考点】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键二、多选题1、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC
8、,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中2、ABC【解析】【分析】根据无理数的定义:无限不循环小数即为无理数,据此判断即可【详解】解:A、是分数,不是有理数,符合题意;B、
9、是整数,不是有理数,符合题意;C、0.37373737是有限小数,不是无理数,符合题意;D、是无理数,不符合题意故选:ABC【考点】本题考查了有理数,熟知定义是解本题的关键3、BC【解析】【分析】先判断a,b的符号,然后根据二次根式的性质逐项分析即可【详解】解,A、无意义,选项错误,不符合题意;B、,选项正确,符合题意;C、,选项正确,符合题意;D、 ,选项错误,不符合题意;故选BC【考点】本题考查了二次根式的乘法,二次根式的除法,以及二次根式的性质,熟练掌握性质是解答本题的关键4、BCD【解析】【分析】判定两个直角三角形全等的方法有:SSS、AAS、ASA、HL四种,对每个选项依次判定解答【
10、详解】解:A、两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等;故本项错误; B、斜边及一锐角对应相等,构成了AAS,能判定全等;故本项正确; C、两条直角边对应相等,构成了SAS,能判定全等;故本项正确; D、一条直角边和另一条直角边上的中线对应相等,可得另一直角边也相等,构成了SAS,能判定全等;故本项正确; 故选BCD【考点】本题主要考查两个直角三角形全等的判定,解决本题的关键是要熟练掌握全等三角形的判定.5、ABD【解析】【分析】先化简,然后根据相反数的意义进行判断即可得出答案【详解】解:A. 与不是一组相反数,故本选项符合题意;B. =,所以与
11、不是一组相反数,故本选项符合题意;C. =2,=-2,所以与是一组相反数,故本选项不符合题意;D. =-2,=-2,所以与不是一组相反数,故本选项符合题意故选ABD【考点】本题考查了相反数,平方根,立方根等知识,能将各数化简并正确掌握相反数的概念是解题关键三、填空题1、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键2、【解析】【分析】由条件,先
12、求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键3、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来4、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是
13、1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在,综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况5、【解析】【分析】根据全等三角形的性质求出EADCAB,求出DABEAC=50,即可得到BAC的度数【详解】解:ABCADE,EADCAB,EADCADCABCAD,EACDAB,EAB125,CAD25,DABEAC=(12525)50,BAC50+2575故答案为:75【考点】本题考查的是全等三角形的性质,掌握全等三角形
14、的对应角相等是解题的关键四、解答题1、ABC是直角三角形,理由见解析【解析】【分析】根据,可以设=k,然后根据a+b+c=12,可以求得k的值,进而求得a、b、c的值,再根据勾股定理的逆定理,即可判断ABC的形状【详解】解:令=k,a+4=3k,b+3=2k,c+8=4k,a=3k4,b=2k3,c=4k8,又a+b+c=12,(3k4)+(2k3)+(4k8)=12,k=3,a=5,b=3,c=4,32+42=52,ABC是直角三角形【考点】本题考查因式分解的应用、勾股定理的逆定理,解答此类问题的关键是明确题意,求出a、b、c的值2、【解析】【分析】直接利用绝对值的性质以及立方根的性质分别化
15、简得出答案【详解】解:原式=4+-2-2=【考点】本题考查实数运算,正确化简各数是解题关键3、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.4、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘
16、多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法5、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键